Qualidade espectral como agente eliciador na produção de compostos fenólicos em calo de Hyptis marrubioides Epling

Autores

DOI:

https://doi.org/10.33448/rsd-v10i9.18472

Palavras-chave:

elicitação abiótica, cultura de calos, HPLC, qualidade da luz, radiação UVC.; Elicitação abiótica; Cultura de calos; HPLC; Qualidade da luz; Radiação UVC.

Resumo

Hyptis marrubioides Epling é uma espécie do cerrado brasileiro tradicionalmente utilizada no tratamento de infecções gastrointestinais e cutâneas, dores e cólicas. O uso de radiação visível e ultravioleta C (UVC) é uma estratégia promissora para otimizar a produção dos metabólitos bioativos. Portanto, o efeito da qualidade espectral da luz sobre a produção de metabólitos foi avaliado em calos de H. marrubioides. O calo foi inoculado em meio MS com 50% da concentração de sal contendo 2 mg L-1 de ácido naftaleno acético (ANA) e 1 mg L-1 de benzilaminopurina (BAP). As culturas de calos foram expostas por 20 dias às qualidades espectrais da luz branca, azul, vermelha e azul + vermelha, bem como à escuridão. Além disso, os calos cultivados sob luz branca foram expostos à UVC no 21º dia por 0, 30, 60, 120 e 240 segundos. A exposição do calo de H. marrubioides à luz azul afeta negativamente a síntese de compostos fenólicos. A luz vermelha estimula a síntese de ácido cafeico e luteolina. A escuridão foi a melhor condição entre as estudadas porque estava associada ao aumento do acúmulo de ácido cafeico, ácido clorogênico, ácido rosmarínico e luteolina. A exposição de calos de H. marrubioides cultivados sob luz branca à radiação UVC promoveu aumento na síntese de ácido clorogênico, ácido ferúlico, ácido rosmarínico e luteolina.

Referências

Abbasi B.H., Tian C.L., Murch S.J., Saxena P.K., Liu C.Z. (2007). Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea, Plant. Cell. Rep. 26, 1367-1372, https://doi.org/10.1007/s00299-007-0344-5.

Abd El-Aal M.S., Rabie K.A.E., Manaf H.H. (2016). The effect of uv-c on secondary metabolites production of echinacea purpurea culture in vitro, J. Biol. Chem. Environ. Sci. 11, 465-483.

Ahmad N., Rab A., Ahmad N. (2016). Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert), J. Photochem. Photobiol. B 154, 51-56, https://doi.org/10.1016/j.jphotobiol.2015.11.015.

Almeida E.P., R.P. Oliveira, Dantas J.L.L. (2001). Indução e desenvolvimento de calos e embriões somáticos em mamoeiro, Sci. Agric. 58, 51-54, http://dx.doi.org/10.1590/S0103-90162001000100009.

Arias J.P., Zapata K., Rojano B., Arias M. (2016). Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana, J. Photochem. Photobiol. B 163, 87-91, http://dx.doi.org/10.1016/j.jphotobiol.2016.08.014.

Arrigoni-Blank M.F., Antoniolli A.R., Caetano L.C., Campos D.A., Blank A.F., Alves P.B. (2008). Antinociceptive activity of the volatile oils of Hyptis pectinata L. Poit. (Lamiaceae) genotypes, Phytomedicine 15, 334-339, https://doi.org/10.1016/j.phymed.2007.09.009.

Barbosa P.P.P., Ramos C.P. (1992). Studies on the antiulcerogenic activity of the essential oil of Hyptis mutabilis Briq. in Rats, Phytother. Res. 6, 114-115, https://doi.org/10.1002/ptr.2650060214.

Bourgaud F., Gravot A., Milesi S., Gontier E. (2001). Production of plant secondary metabolites: a historical perspective, Plant Sci. 2001, 839-851, https://doi.org/10.1016/S0168-9452(01)00490-3.

Bueno A.X., Moreira A.T.S., Silva F.T. (2006). Estevam C.S., Marchioro M., Effects of the aqueous extract from Hyptis pectinata leaves on rodent central nervous system, Rev. Brasil. Farmacogn. 16, 317-323, https://doi.org/10.1590/S0102-695X2006000300007.

Carvalho S.D., Folta K.M. (2014). Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content, Hortic. Res. 1, 1-13, http://dx.doi.org/10.1038/hortres.2014.8.

Cetin E.S. (2014). Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures, Biol. Res. 47, 37, https://doi.org/10.1186/0717-6287-47-37.

Coelho G.C., Rachwal M.F.G., Dedecek R.A., Curcio G.R., Nietsche K., Schenkel E.P. (2007). Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil, Biochem. Syst. Ecol. 35 75-80, https://doi.org/10.1016/j.bse.2006.09.001.

Costa J.G.M., Rodrigues F.F.G., Angélico E.C., Silva M.R., Mota M.L., Santos N.K.A., Cardoso A.L.H., Lemos T.L.G. (2005). Estudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti, Rev. Brasil. Farmacogn. 15, https://doi.org/10.1590/S0102-695X2005000400008.

Coutinho H.D.M., Costa J.G.M., Lima E.O., Falcão-Silva V.S.,. Siqueira-Júnior J.P. (2009). In vitro interference of Hyptis martiusii Benth. & chlorpromazine against an aminoglycoside - resistant Escherichia coli, Indian J. Med. Res. 129, 566-568.

Dias M.I., Sousa M.J., Alves R.C., Ferreira I.C.F.R. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: a review, Ind. Crop. Prod. 82, 9-22, https://doi.org/10.1016/j.indcrop.2015.12.016.

Fazal H., Abbasi B.H., Ahmad N., Ali S.S., Akbar F., Kanwal F. (2016). Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L, J. Photochem. Photobiol. B 159, 1-7, https://doi.org/10.1016/j.jphotobiol.2016.03.008.

Ferreira D.F., SISVAR: a computer statistical analysis system, Cien. Agrotec. 35 (2011) 1039-1042, http://dx.doi.org/10.1590/S1413-70542011000600001.

Gupta S.K., Sharma M., Deeba F., Pandey V. (2017). Plant Response: UV-B Avoidance Mechanisms, in: V.P. Singh, S. Singh, S.M. Prasad, P. Parihar (Eds.) UV-B radiation: from environmental stressor to regulator of plant growth, Wiley Blackwell, Chichester, pp. 227-258.

Hernandez-Aguilar, C., Dominguez-Pacheco, A., Tenango, M. P., Valderrama-Bravo, C., Hernández, M. S., Cruz-Orea, A., & Ordonez-Miranda, J. (2021). Characterization of bean seeds, germination, and phenolic compounds of seedlings by UV-C radiation. Journal of Plant Growth Regulation, 40(2), 642-655, https://doi.org/10.1007/s00344-020-10125-0.

Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. (2016). Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture, Environ. Exp. Bot 121, 22-38, https://doi.org/10.1016/j.envexpbot.2015.06.009.

Kokotkiewicz A., Bucinski A., Luczkiewicz M. (2014). Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush), Plant Cell Tissue Organ Cult. 118, 589-593, https://doi.org/10.1007/s11240-014-0502-8.

Kravets A.P., Sokolova D.A., Vengzhen G.S., Grodzinskiĭ D.M. (2013). [Fractionated UV-C irradiation effects on the changes of transcribed and satellite DNA methylation profile and unstable chromosomal aberration yield], Radiats. Biol. Radioecol. 53, 583-591.

Kuhnt M., Probstle A., Rimpler H., Bauer R., Heinrich M. (1995). Biological and pharmacological activities and further constituents of Hyptis verticillata, Planta Med. 61, 227-232, https://doi.org/10.1055/s-2006-958061.

Liu W., Liu C., Yang C., Wang L., Li S. (2010). Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation, Food Chem. 122, 475-481.

Liu Z., Zhang Y., Wang J., Li P., Zhao C., Chen Y., Bi Y. (2015). Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings, Plant. Sci. 238, 64-72, https://doi.org/10.1016/j.plantsci.2015.06.001.

Luis J.C., Pérez R.M., González F.V. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants, Food Chem. 101, 1211-1215, https://doi.org/10.1016/j.foodchem.2006.03.023.

Marti G., Schnee S., Andrey Y., Simoes-Pires C., Carrupt P.A., Wolfender J.L., Gindro K. (2014). Study of leaf metabolome modifications induced by UV-C radiations in representative Vitis, Cissus and Cannabis species by LC-MS based metabolomics and antioxidant assays, Molecules 19, 14004-14021, https://doi.org/10.3390/molecules190914004.

Moon S.H., Mistry B., Kim D.H., Pandurangan M. (2017). Antioxidant and anticancer potential of bioactive compounds following UV-C light-induced plant cambium meristematic cell cultures, Ind. Crop. Prod. 109, 762-772, https://doi.org/10.1016/j.indcrop.2017.09.024.

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant. 15, 473-497, https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Murthy H.N., Lee E.J., Paek K.Y. (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation, Plant Cell Tissue Organ Cult. 118, 1-16, https://doi.org/10.1007/s11240-014-0467-7.

Ramakrishna A., Ravishankar G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants, Plant. Signal. Behav. 6, 1720-1731, https://doi.org/10.4161/psb.6.11.17613.

Rodrigues V.E.G., Carvalho D.A.D. (2001). Levantamento etnobotânico de plantas medicinais no domíniodo cerrado na região do alto rio Grande – Minas Gerais, Cien. Agrotec. 25, 102-123.

Tariq U., Ali M., Abbasi B.H. (2014). Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L, J. Photochem. Photobiol. B 130, 264-271, http://dx.doi.org/10.1016/j.jphotobiol.2013.11.026.

Tiecher A., de Paula L.A., Chaves F.C., Rombaldi C.V. (2013). UV-C effect on ethylene, polyamines and the regulation of tomato fruit ripening, Postharvest Biol. Technol. 86, 230-239, https://doi.org/10.1016/j.postharvbio.2013.07.016

Urban L., Charles F., de Miranda M.R.A., Aarrouf J. (2016). Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest, Plant Physiol. Biochem. 105, 1-11, https://doi.org/10.1016/j.plaphy.2016.04.004.

Villacís‐Chiriboga, J., Elst, K., Van Camp, J., Vera, E., & Ruales, J. (2020). Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Comprehensive Reviews in Food Science and Food Safety, 19(2), 405-447, https://doi.org/10.1111/1541-4337.12542.

Wang H., Ma L.G., Li J.M., Zhao H.Y., Deng X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development, Science 294, 154-158, https://doi.org/10.1126/science.1063630.

Wargent J.J., Jordan B.R. (2013). From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production, New Phytol. 197, 1058-107, https://doi.org/10.1111/nph.12132.

Yousefzadi M., Sharifi M., Behmanesh M., Ghasempour A., Moyano E., Palazon J. (2012). The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture, Plant Physiol. Biochem. 56, 41-46, https://doi.org/10.1016/j.plaphy.2012.04.010.

Zagoskina N.V., Alyavina A.K., Gladyshko T.O., Lapshin P.V., Egorova E.A., Bukhov N.G. (2005). Ultraviolet rays promote development of photosystem II photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis), Russ. J. Plant Physiol. 52, 731-739, https://doi.org/10.1007/s11183-005-0109-3.

Zagoskina N.V., Dubravina G.A., Alyavina A.K., Goncharuk E.A. (2003). Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures, Russ. J. Plant Physiol. 50, 270-275, https://doi.org/10.1023/A:1022945819389.

Downloads

Publicado

02/08/2021

Como Citar

DANTAS, L. A. .; FARIA , P. S. A. .; MELO, A. M. de; ROSA, M.; RESENDE, E. C. .; PEREIRA, P. S. .; SILVA, F. G. .; RUBIO NETO, A. Qualidade espectral como agente eliciador na produção de compostos fenólicos em calo de Hyptis marrubioides Epling. Research, Society and Development, [S. l.], v. 10, n. 9, p. e59210918472, 2021. DOI: 10.33448/rsd-v10i9.18472. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18472. Acesso em: 2 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas