Effect of sucrose on the fatty acid metabolism of adventitious root cultures in vitro of Stevia rebaudiana





Adventitious root cultures; Fatty acids; Stevia rebaudiana; Sucrose.


In this study, the effect of sucrose on the neutral lipid profile of adventitious root cultures of Stevia rebaudiana was evaluated. The cultures were obtained employing a roller bottle system. In this system, Schott-type flasks were used, which contained Murashige and Skoog liquid medium at 33.3% strength (MS/3) supplemented with 30, 60, and 80 g L-1 of sucrose, respectively, and 10.7 mM 1-naphthaleneacetic acid (NAA). The spectroscopic analyzes showed that the portion of polyunsaturated fatty acids (PUFAs) was highest in roots treated with 30 g L-1 of sucrose. The spectrometric analyzes showed that the palmitic acid was found to be present in relatively higher amounts in the roots submitted to the MS/3-30 g L-1 (31.9%) and MS/3-60 g L-1 (29.5%) sucrose treatments, and lower in the treatment with MS/3-80 g L-1 (28.8%) of sucrose. Also, the treatment using 30 g L-1 of sucrose was the best for obtaining unsaturated fatty acids (UFAs) in the culture, with a relative percentage of 62.9%. Our results indicate that the MS medium that received 30 g L-1 of sucrose induced a lesser abiotic stress condition, which favored PUFAs production in the adventitious root cultures of S. rebaudiana.

Author Biographies

Bruna Gabrieli Follador, State University of Maringa

Pharmaceutical Sciences Graduate Program, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, 87.020-900, Maringa, Brazil.

Éverton da Silva Santos, State University of Maringa

Pharmaceutical Sciences Graduate Program, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, 87.020-900, Maringa, Brazil.

Regina Aparecida Correia Gonçalves, State University of Maringá

Pharmaceutical Sciences Graduate Program, Department of Pharmacy, State University of Maringa, Av. Colombo 5790, 87.020-900, Maringa, Brazil


Baque, M. A., Elgirban, A., Lee, E.-J., & Paek, K.-Y. (2012). Sucrose regulated enhanced induction of anthraquinone, phenolics, flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.). Acta Physiologiae Plantarum.34: 405-415. 10.1007/s11738-011-0837-2.

Brandle, J., & Rosa, N. (1992). Heritability for yield, leaf: stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Canadian Journal of Plant Science. 72(4): 1263-1266. 10.4141/cjps92-159.

Cui, X.-H., Chakrabarty, D., Lee, E.-J., & Paek, K.-Y. (2010). Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor.Bioresource Technology. 101(12): 4708-4716. 10.1016/j.biortech.2010.01.115.

Dacome, A. S., Silva, C. C., Costa, C. E., Fontana, J. D., Adelmann, J., & Costa, S. C. (2005). Sweet diterpenic glycosides balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: Isolation and quantitative distribution by chromatographic, spectroscopic, and electrophoretic methods. Process Biochemistry. 40(11):3587-3594. 10.1016/j.procbio.2005.03.035.

Georgiev, M. I., & Weber, J. (2014). Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization. Biotechnology Letters. 36(7): 1359-1367. 10.1007/s10529-014-1498-1.

Gunawan, S., Darmawan, R., Nanda, M., Setiawan, A. D., & Fansuri, H. (2013). Proximate composition of Xylocarpus moluccensis seeds and their oils. Industrial Crops and Products.41: 107-112. 10.1016/j.indcrop.2012.04.010.

Jacomini, D., Sinzker, R. C., Mangolin, C. A., Grande, P. A., Nocchi, S. R., Nakamura, C. V., Oliveira, A. J. B., &Gonçalves, R. A. C. (2015). Lipid profile and antiproliferative activity of callus cultures of Cereus peruvianus Mill. Industrial Crops and Products.69, 408-414. 10.1016/j.indcrop.2015.02.034.

Kumari, P., Reddy, C. R. K., & Jha, B. (2011). Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Analytical Biochemistry. 415(2): 134-144. 10.1016/j.ab.2011.04.010.

Lee, E. J., Mobin, M., Hahn, E.J., Paek K. Y. (2006). Effects of sucrose, inoculum density, auxins, and aeration volume on ceil growth of GymnemasylvestreJournal of Plant Biology. 49(6): 427-431. 10.1007/BF03031122.

Lopes, S.M.S., Francisco, M.G., Higashi, B., Almeida, R.T.R., Krausová, G., Pilau, E.J., Gonçalves, J.E., Gonçalves, R.A.C., & Oliveira, A.J.B. (2016). Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydrate Polymers. 152: 718-725. 10.1016/j.carbpol.2016.07.043.

Madan, S., Ahmad, S., Singh, G., Kohli, K., Kumar, Y., Singh, R., &Garg, M. (2010). Stevia rebaudiana (Bert.) Bertoni-a review. Indian.Journal of Natural Products and Resources. 1(3): 267-286.

Manuhara, Y. S. W., Kristanti, A. N., Utami, E. S. W., & Yachya, A. (2015). Effect of sucrose and potassium nitrate on biomass and saponin content of Talinum paniculatum Gaertn. hairy root in balloon-type bubble bioreactor. Asian Pacific Journal of Tropical Biomedicine. 5(12): 1027-1032. 10.1016/j.apjtb.2015.09.009.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology. 15(3): 473-497. 10.1111/j.1399-3054.1962.tb08052.x.

Oksman-Caldentey, K.-M., Sevón, N., Vanhala, L., & Hiltunen, R. (1994). Effect of nitrogen and sucrose on the primary and secondary metabolism of transformed root cultures of Hyoscyamus muticus. Plant Cell, Tissue and Organ Culture. 38: 263-272. 10.1007/BF00033886.

Pereira, A. S. Metodologia da pesquisa científica. UFSM, 2018. https://repos itorio.ufsm.br/bitstr eam/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Reis, R. V., Borges, A. P. P. L., Chierrito, T. P. C., Souto, E. R., Souza, L. M., Iacomini, M., Oliveira, A. J. B., & Gonçalves, R. A. C. (2011). Establishment of adventitious root culture of Stevia rebaudiana Bertoni in a roller bottle system. Plant Cell, Tissue and Organ Culture. 106: 329-335. 10.1007/s11240-011-9925-7.

Shimada, T. L., &Hara-Nishimura, I. (2015). Leaf oil bodies are subcellular factories producing antifungal oxylipins. Current Opinion in Plant Biology. 25: 145-150. 10.1016/j.pbi.2015.05.019.

Shimada, T. L., Takano, Y., & Hara-Nishimura, I. (2015). Oil body-mediated defense against fungi: from tissues to ecology. Plant Signaling & Behavior. 10(2): e989036. 10.4161/15592324.2014.989036.

Shimada, T. L., Takano, Y., Shimada, T., Fujiwara, M., Fukao, Y., Mori, M., Okazaki, Y., Saito, K., Sasaki, R., & Aoki, K. (2014). Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiology. 164(1): 105-118. 10.1104/pp.113.230185.

Simonetti, G., Tocci, N., Valletta, A., Brasili, E., D'Auria, F. D., Idoux, A., & Pasqua, G. (2016). In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur. Natural Product Research. 30(5): 544-550. 10.1080/14786419.2015.1028059.

Singer, S. D., Zou, J., & Weselake, R. J. (2016). Abiotic factors influence plant storage lipid accumulation and composition. Plant Science. 243: 1-9. 10.1016/j.plantsci.2015.11.003.

Sivanandhan, D., Arun, M., Mayavan, S., Rajesh, M., Jeyaraj, M., Dev, G. K., Manickavasagam, M., Selvaraj, N., & Ganapathi, A. (2012). Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Withania somnifera (L.) Dunal. Biotechnology and Applied Biochemistry. 168(3): 681-696. 10.1007/s12010-012-9809-2.

Slocombe, S. P., Cornah, J., Pinfield‐Wells, H., Soady, K., Zhang, Q., Gilday, A., Dyer, J. M., & Graham, I. A. (2009). Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotechnology Journal. 7(7): 694-703. 10.1111/j.1467-7652.2009.00435.x.

Soejarto, D. D., Kinghorn, A. D., & Farnsworth, N. R. (1982). Potential sweetening agents of plant origin. III. Organoleptic evaluation of Stevia leaf herbarium samples for sweetness. Journal of Natural Products. 45(5): 590-599. 10.1021/np50023a013.

Tariq, M., Ali, S., Ahmad, F., Ahmad, M., Zafar, M., Khalid, N., & Khan, M. A. (2011). Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology. 92(3): 336-341. 10.1016/j.fuproc.2010.09.025.

Tavarini, S., & Angelini, L. G. (2013). Stevia rebaudiana Bertoni as a source of bioactive compounds: the effect of harvest time, experimental site and crop age on steviol glycoside content and antioxidant properties. Science of Food and Agriculture. 93(9): 2121-2129. 10.1002/jsfa.6016.

Thiyagarajan, M., & Venkatachalam, P. (2012). Large scale in vitro propagation of Stevia rebaudiana (Bert) for commercial application: Pharmaceutically important and antidiabetic medicinal herb. Industrial Crops and Products. 37(1): 111-117. 10.1016/j.indcrop.2011.10.037.

Thoss, V., Murphy, P. J., Marriott, R., & Wilson, T. (2012). Triacylglycerol composition of British bluebell (Hyacinthoides non-scripta) seed oil. RSC Advances.12(2): 5314-5322. 10.1039/C2RA20090B.

Tocci, N., D'Auria, F. D., Simonetti, G., Panella, S., Palamara, A. T., & Pasqua, G. (2012). A three step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium in vitro roots. Plant Physiology and Biochemistry.57: 54-58. 10.1016/j.plaphy.2012.04.014.

Tocci, N., Simonetti, G., D’Auria, F.D., Panella, S., Palamara, A. T., Valletta, A., & Pasqua, G. (2011). Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Applied Microbiology and Biotechnology. 91(4): 977-987. 10.1007/s00253-011-3303-6.

Usman, A., Thoss, V., Darko, G., & Itodo, A. U. (2016). Determination of triacylglycerol composition of Trichilia emetica seed oil using GC–MS and 1H NMR spectroscopy. Advances in Analytical Chemistry. 6(1): 10-16. 10.5923/j.aac.20160601.02.

Wilson, S. A., Cummings, E. M., & Roberts, S. C. (2014). Multi-scale engineering of plant cell cultures for promotion of specialized metabolism. Current Opinion in Biotechnology.29: 163-170. 10.1016/j.copbio.2014.07.001.

Wu, C., Popova, E. V., Hahn, E. J., & Paek, K. Y. (2009). Linoleic and α-linolenic fatty acids affect biomass and secondary metabolite production and nutritive properties of Panax ginseng adventitious roots cultured in bioreactors. Biochemical Engineering Journal. 47(1-3): 109-115. 10.1016/j.bej.2009.07.011.

Wu, C., Tang, J., Jin, Z., Wang, M., Liu, Z., Huang, T., & Lian, M. (2018). Optimizing co-culture conditions of adventitious roots of Echinacea pallida and Echinacea purpúreain air-lift bioreactor systems. Biochemical Engineering Journal.132: 206-216. 10.1016/j.bej.2018.01.024.

Xu, C., &Shanklin, J. (2016). Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annu.Rev. Plant Biology.67: 179-206. 10.1146/annurev-arplant-043015-111641.

Yin, H., Fretté, X. C., Christensen, L. P., & Grevsen, K. (2012). Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanumvulgare ssp. hirtum). Journal of Agricultural and Food Chemistry. 60(1), 136-143. 10.1021/jf204376j.

Yin, S., Gao, W., Liang, Y., Wang, J., Liu, H., Wei, C., & Zuo, B. (2013). Influence of sucrose concentration and phosphate source on biomass and metabolite accumulation in adventitious roots of Pseudostellaria heterophylla. Acta Physiologiae Plantarum. 35(5): 1579-1585. 10.1007/s11738-012-1199-0.

Zhai, Z., Liu, H., Xu, C., & Shanklin, J. (2017). Sugar potentiation of fatty acid and triacylglycerol accumulation. Plant Physiology. 175(2): 696-707. 10.1104/pp.17.00828.




How to Cite

FOLLADOR, B. G.; SANTOS, Éverton da S. .; GONÇALVES, J. E.; GONÇALVES, R. A. C. .; OLIVEIRA, A. J. B. de . Effect of sucrose on the fatty acid metabolism of adventitious root cultures in vitro of Stevia rebaudiana. Research, Society and Development, [S. l.], v. 10, n. 10, p. e182101018651, 2021. DOI: 10.33448/rsd-v10i10.18651. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18651. Acesso em: 20 feb. 2024.



Agrarian and Biological Sciences