Analysis of the fermentative profile of yeasts isolated from natural sources
DOI:
https://doi.org/10.33448/rsd-v10i10.19127Keywords:
Prospecting; Saccharomyces cerevisiae; Biocatalysis; Fermentation.Abstract
The natural environment aggregates an immense amount of microorganisms, some unknown and others still unexplored and that may have the potential for the production of compounds. Thus, this study aims to evaluate the fermentative profile of isolates from natural sources under different growing conditions. For this purpose, the plating performing on a 2% YPD solid medium incubating in an oven at 30 °C. The isolated colonies use for the carbon source assimilation test, which carried out through cell growth. Carrying out in test tubes containing the YP fermentative added with carbon sources (glucose, lactose, sucrose, fructose, mannose, maltose, starch) with a concentration of 17 ºBrix, at pH 4 and 6, incubated at 28 and 35 ºC and at different times of cultivation, aliquots removed for analysis. For the control, the yeast Catanduva-1 was used. The isolates grew in the range of pH 4 and pH 6 at 28 ºC and isolate A4 showed greater growth at a temperature of 35 °C. Isolates A4, A5, and A6 used most sugars except for lactose. Isolate A2 assimilated glucose and fructose and A6 showed a fermentation profile similar to standard yeast.
References
Abdel-Banat, B. M., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied microbiology and biotechnology, 85(4), 861-867.
Amorim, H. V., Gryschek, M., & Lopes, M. L. (2010). The success and sustainability of the Brazilian sugarcane− fuel ethanol industry. In Sustainability of the Sugar and Sugar− Ethanol Industries (pp. 73-82). American Chemical Society.
Amorim, H. V., & Lopes, M. L. (2013). Ciência e tecnologia na seleção de leveduras para produção de etanol. Microrganismos em Agroenergia: da Prospecção aos Bioprocessos. Brasília: Embrapa Agroenergia, 42-59.
Basso, T. O., de Kok, S., Dario, M., do Espirito-Santo, J. C. A., Müller, G., Schlölg, P. S., Silva C. P., Tonso, A., Daran, J. M., Gombert, A. K., van Maris, A. J. A., Pronk, J. T., & Stambuk, B. U. (2011). Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metabolic engineering, 13(6), 694-703.
Batistote, M., & Santos, M. D. S. M. (2020). Analysis of fermentative parameters and the importance of Saccharomyces cerevisiae in the development of goods and services. Research, Society and Development, 9(11), e93691110586-e93691110586.
Bhalla, T. C., Thakur, N., & Thakur, N. (2017). Invertase of Saccharomyces cerevisiae SAA-612: Production, characterization and application in synthesis of fructo-oligosaccharides. LWT, 77, 178-185.
Brown, N. A., de Castro, P. A., de Castro Pimentel Figueiredo, B., Savoldi, M., Buckeridge, M. S., Lopes, M. L., & Goldman, G. H. (2013). Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Research, 13(3), 277-290.
Compagno, C., Dashko, S., & Piškur, J. (2014). Introduction to carbon metabolism in yeast. In Molecular mechanisms in yeast carbon metabolism (pp. 1-19). Springer, Berlin, Heidelberg.
Cruz, M., Raminho, M., Castro, A., Guidini, C., Resende, M. D., & Ribeiro, E. (2014). Estudo da influência da Temperatura na Resistência ao Etanol da Levedura Saccharomyces cerevisiae Y904. In XX Congresso Brasileiro de Engenharia Química.
Da Silva Santos, A. F., Santos, M. D. S. M., Maia, F. S., Cardoso, C. A. L., & Batistote, M. (2018). Perfil de produção de etanol e trealose em Saccharomyces cerevisiae cultivadas em mosto a base de caldo de cana. Scientia Plena, 14(7).
Della-Bianca, B. E., Basso, T. O., Stambuk, B. U., Basso, L. C., & Gombert, A. K. (2013). What do we know about the yeast strains from the Brazilian fuel ethanol industry? Applied microbiology and biotechnology, 97(3), 979-991.
Dionisi, H. M., Lozada, M., & Olivera, N. L. (2012). Bioprospection of marine microorganisms: biotechnological applications and methods. Revista Argentina de Microbiología, 44(1), 49-60.
Ferreira Junior, R. A., Souza, J. L. D., Lyra, G. B., Teodoro, I., Santos, M. A. D., & Porfirio, A. (2012). Crescimento e fotossíntese de cana-de-açúcar em função de variáveis biométricas e meteorológicas. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(11), 1229-1236.
Fiedurek, J., Skowronek, M., & Gromada, A. (2011). Selection and adaptation of Saccharomyces cerevisae to increased ethanol tolerance and production. Pol J Microbiol, 60(1), 51-58.
Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied microbiology and biotechnology, 74(5), 937-953.
Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology advances, 33(7), 1395-1402.
Mattanovich, D., Sauer, M., & Gasser, B. (2014). Yeast biotechnology: teaching the old dog new tricks. Microbial cell factories, 13(1), 1-5.
Moreira, C. S., Santos, M. D. S. M., Barro, N. S., Cardoso, C. A. L., & Batistote, M. (2015). Análise dos parâmetros morfofisiológicos de linhagens de leveduras industriais com potencial biotecnológico para a produção de etanol. Ciência e Natura, 37(3), 55-63.
Mueller, L. P., Santos, M. D. S. M., Cardoso, C. A. L., & Batistote, M. (2020). The effects of thermal and ethanolic stress in industrial strains of Saccharomyces cerevisiae. Research, Society and Development, 9(10), e6819109091-e6819109091.
Ribeiro, F. A. M. (2010). Fermentação Alcoólica -Apostila do ModuloII–Processamento na indústria sucroalcooleiro, FAZU em Revista.
Sousa, J. D., & Monteiro, R. A. B. (2012). Fatores interferentes na fermentação alcoólica para a produção de etanol. FAZU em Revista, (08).
Tofighi, A., Assadi, M. M., Asadirad, M. H. A., & Karizi, S. Z. (2014). Bio-ethanol production by a novel autochthonous thermo-tolerant yeast isolated from wastewater. Journal of Environmental Health Science and Engineering, 12(1), 1-6.
Tortora, G. J., Funke, B. R., & Case, C. L. (2012). Microbiologia 10a Edição.
Vasconcelos, J. N. Ethanol Fermentation In Santos, F., Borém, A., & Caldas, C. (Eds.). (2015). Sugarcane: Agricultural production, bioenergy and ethanol. Academic Press.
Wenger, J. W., Piotrowski, J., Nagarajan, S., Chiotti, K., Sherlock, G., & Rosenzweig, F. (2011). Hunger artists: yeast adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS genetics, 7(8), e1002202.
Zhang, Q., Jin, Y. L., Fang, Y., & Zhao, H. (2019). Adaptive evolution and selection of stress-resistant Saccharomyces cerevisiae for very high-gravity bioethanol fermentation. Electronic Journal of Biotechnology, 41, 88-94.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Elane Galvão dos Santos; Rebeca Fasioli Silva; Maria do Socorro Mascarenhas Santos; Margareth Batistote
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.