In vitro evaluation of the antimicrobial activity and diffusion capacity of solutions used for canine ear cleaning

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.19285

Keywords:

Antimicrobial activity; Canine ear cleanser; Ceruminolytic agents; Otitis externa.

Abstract

Otitis is a common condition among dogs and requires appropriate treatment. Given the importance of the otitis externa and the use of products to combat this condition, this study evaluated the in vitro antimicrobial abilities of six commercial ear cleaners solutions (EC1 to EC6) and solutions of 3% boric acid, 3% lactic acid, 0.11% salicylic acid, 0.5% chlorhexidine, and 3% propylene glycol against Staphylococcus spp., Pseudomonas spp., Proteus spp., and Malassezia spp. The in vitro diffusion capacity in synthetic cerumen was also assessed. Dogs with clinical signs of otitis externa were selected and samples were collected from the external ear canals. The microbiological study was performed to identify the microorganisms from samples collected and the microorganisms isolated were used in the study. One ceruminolytic for human use and five commercial solutions used for canine ear cleaning were selected based on the diversity of the components used in each formula. The results show a variation of antimicrobial activity and diffusion capacity ear cleaners and its compounds. Lactic acid, chlorhexidine, EC1, EC2, EC4, and EC5 showed the best results for microbiological growth inhibition; boric acid, salicylic acid, propylene glycol and EC6 had little or no effect on microorganism growth. The ECs tested demonstrated diffusion capacity using the SSC. EC1 was the solution with the most significant responses, both as an antimicrobial agent and with regards to diffusion capacity. Among the commercial veterinary products tested, EC4 was found to have the best results.

Author Biographies

Carolina Boesel Scherer, Federal University of Minas Gerais

Department of Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.

Larissa Silveira Botoni, Federal University of Minas Gerais

Department of Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.

Kelly Moura Keller, Federal University of Minas Gerais

Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.

Antônio Último de Carvalho, Federal University of Minas Gerais

Departament of Agricultural Sciences, Campus Bambuí do Instituto Federal de Minas Gerais (IFMG), Bambuí, Minas Gerais, Brazil.

Adriane Pimenta da Costa-Val, Federal University of Minas Gerais

Department of Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.

References

Bannoehr, J., & Guardabassi, L. (2012). Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Veterinary Dermatology, 23 (4), 1–16. doi:10.1111/j.1365-3164.2012.01046.x

Banovic, F., Bozic, F., & Lemo, N. (2013). In vitro comparison of the effectiveness of polihexanide and chlorhexidine against canine isolates of Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. Veterinary Dermatology, 24(4). doi:10.1111/vde.12048

Borio, S., Colombo, S., La Rosa, G., De Lucia, M., Damborg, P., & Guardabassi, L. (2015). Effectiveness of a combined (4% chlorhexidine digluconate shampoo and solution) protocol in MRS and non-MRS canine superficial pyoderma: A randomized, blinded, antibiotic-controlled study. Veterinary Dermatology, 26(5), 339-e72. doi:10.1111/vde.12233

Bugden, D. L. (2013). Identification and antibiotic susceptibility of bacterial isolates from dogs with otitis externa in Australia. Australian Veterinary Journal, 91 (1–2), 43–46. doi:10.1111/avj.12007

CLSI. (2009). Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. Clinical and Laboratory Standards Institute, M44-A2(Second Ed), 29(17).

CLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically ; Approved Standard — Ninth Edition. In Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standar- Ninth Edition (Vol. 32, Issue 2).

CLSI. (2017). Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Suplement(27th ed.), 282.

Grether-Beck, S., Felsner, I., Brenden, H., Kohne, Z., Majora, M., Marini, A., Jaenicke, T., Rodriguez-Martin, M., Trullas, C., & Hupe, M. (2012). Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. Journal of Investigative Dermatology, 132 (6), 1561–1572.

Guardabassi, L., Loeber, M. E., & Jacobson, A. (2004). Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Veterinary Microbiology, 98 (1), 23–27. doi:10.1016/j.vetmic.2003.09.021

Guardabassi, Luca, Ghibaudo, G., & Damborg, P. (2010). In vitro antimicrobial activity of a commercial ear antiseptic containing chlorhexidine and Tris-EDTA. Veterinary Dermatology, 21 (3), 282–286. doi:10.1111/j.1365-3164.2009.00812.x

Humphries, R. M., Wu, M. T., Westblade, L. F., Robertson, A. E., Burnham, C.-A. D., Wallace, M. A., Burd, E. M., Lawhon, S., & Hindler, J. A. (2016). In vitro antimicrobial susceptibility of Staphylococcus pseudintermedius isolates of human and animal origin. Journal of Clinical Microbiology, 54 (5), 1391–1394.

Lloyd, D. H., Bond, R., & Lamport, I. (1998). Antimicrobial activity in vitro and in vivo of a canine ear cleanser. Veterinary Record, 25 (4), 111-2. doi: 10.1136/vr.143.4.111.

Lyskova, P., Vydrzalova, M., & Mazurova, J. (2007). Identification and antimicrobial susceptibility of bacteria and yeasts isolated from healthy dogs and dogs with otitis externa. Journal of Veterinary Medicine Series A: Physiology Pathology Clinical Medicine, 54 (10), 559–563. doi:10.1111/j.1439-0442.2007.00996.x

Marignac, G., Petit, J. Y., Jamet, J. F., Desquilbet, L., Petit, J. L., Woehrlé, F., Trouchon, T., Fantini, O., & Perrot, S. (2019). Double Blinded, Randomized and Controlled Comparative Study Evaluating the Cleaning Activity of Two Ear Cleaners in Client-Owned Dogs with Spontaneous Otitis Externa. Open Journal of Veterinary Medicine, 09 (06), 67–78. doi:0.4236/ojvm.2019.96006

Marrero, E. J., Silva, F. A., Rosario, I., Déniz, S., Real, F., Padilla, D., Díaz, E. L., & Acosta-Hernández, B. (2017). Assessment of in vitro inhibitory activity of hydrogen peroxide on the growth of Malassezia pachydermatis and to compare its efficacy with commercial ear cleaners. Mycoses, 60(10), 645–650. https://doi.org/10.1111/myc.12637

Mason, C. L., Steen, S. I., Paterson, S., & Cripps, P. J. (2013). Study to assess in vitro antimicrobial activity of nine ear cleaners against 50 Malassezia pachydermatis isolates. Veterinary Dermatology, 24 (3). doi:10.1111/vde.12024

Mehrotra, M., Wang, G., & Johnson, W. M. (2000). Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. Journal of Clinical Microbiology, 38 (3), 1032–1035.

Nalawade, T. M., Bhat, K., & Sogi, S. H. P. (2015). Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms. Journal of International Society of Preventive & Community Dentistry, 5 (2), 114–119. doi:10.4103/2231-0762.155736

Nuttall, T., & Cole, L. K. (2004). Ear cleaning: The UK and US perspective. Veterinary Dermatology, 15(2), 127–136. https://doi.org/10.1111/j.1365-3164.2004.00375.x

Oplustil, C. P., Zoccoli, C. M., Tobouti, N. R., & Sinto, S. I. (2000). Procedimentos básicos em microbiologia clínica. Sarvier, São Paulo.

Paterson, S. (2016). Topical ear treatment – options, indications and limitations of current therapy. Journal of Small Animal Practice, 57 (12), 668–678. doi:10.1111/jsap.12583

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria, Rio Grande do Sul: UFSM.

Quinn, P. J., Markey, B. K., Leonard, F. C., Hartigan, P., Fanning, S., & FitzPatrick, E. S. (2011). Veterinary microbiology and microbial disease. Chichester, West Sussex, UK : Wiley-Blackwell.

Rafferty, R., Robinson, V. H., Harris, J., Argyle, S. A., & Nuttall, T. J. (2019). A pilot study of the in vitro antimicrobial activity and in vivo residual activity of chlorhexidine and acetic acid/boric acid impregnated cleansing wipes. BMC Veterinary Research, 15 (1), 382. doi:10.1186/s12917-019-2098-z

Rojas, F. D., Córdoba, S. B., Ángeles, M. S., Zalazar, L. C., Fernández, M. S., Cattana, M. E., Alegre, L. R., Carrillo-Muñoz, A. J., & Giusiano, G. E. (2016). Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies. Mycoses, 60 (2), 104–111. doi:10.1111/myc.12556

Sánchez-Leal, J., Mayós, I., Homedes, J., & Ferrer, L. (2006). In vitro investigation of ceruminolytic activity of various otic cleansers for veterinary use. Veterinary Dermatology, 17(2), 121–127. doi:10.1111/j.1365-3164.2006.00504.x

Sant’Anna Addor, F. A., Schalka, S., Cardoso Pereira, V. M., & Brandão Folino, B. (2009). Correlação entre o efeito hidratante da ureia em diferentes concentrações de aplicação: estudo clínico e corneométrico. Surgical & Cosmetic Dermatology, 1 (1), 5-9.

Sasaki, T., Tsubakishita, S., Tanaka, Y., Sakusabe, A., Ohtsuka, M., Hirotaki, S., Kawakami, T., Fukata, T., & Hiramatsu, K. (2010). Multiplex-PCR method for species identification of coagulase-positive staphylococci. Journal of Clinical Microbiology, 48 (3), 765–769. doi:10.1128/JCM.01232-09

Stahl, J., Mielke, S., Pankow, W. R., & Kietzmann, M. (2013). Ceruminal diffusion activities and ceruminolytic characteristics of otic preparations - an in-vitro study. BMC Veterinary Research, 9, 70. doi:10.1186/1746-6148-9-70

Steen, S. I., & Paterson, S. (2012). The susceptibility of Pseudomonas spp. isolated from dogs with otitis to topical ear cleaners. Journal of Small Animal Practice, 53 (10), 599–603. doi:10.1111/j.1748-5827.2012.01262.x

Swinney, A., Fazakerley, J., McEwan, N., & Nuttall, T. (2008). Comparative in vitro antimicrobial efficacy of commercial ear cleaners. Veterinary Dermatology, 19 (6), 373–379. doi:10.1111/j.1365-3164.2008.00713.x

Thickett, E., & Cobourne, M. T. (2009). New developments in tooth whitening. The current status of external bleaching in orthodontics. Journal of Orthodontics, 36 (3), 194–201.

Vassalli, L., Harris, D. M., Gradini, R., & Applebaum, E. L. (1988). Inflammatory effects of topical antibiotic suspensions containing propylene glycol in chinchilla middle ears. American Journal of Otolaryngology, 9 (1), 1–5.

Downloads

Published

18/08/2021

How to Cite

SCHERER, C. B. .; BOTONI, L. S.; KELLER, K. M.; COURA, F. M. .; CARVALHO, A. Último de .; COSTA-VAL, A. P. da. In vitro evaluation of the antimicrobial activity and diffusion capacity of solutions used for canine ear cleaning. Research, Society and Development, [S. l.], v. 10, n. 10, p. e539101019285, 2021. DOI: 10.33448/rsd-v10i10.19285. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19285. Acesso em: 22 nov. 2024.

Issue

Section

Agrarian and Biological Sciences