Evaluation of the efficiency of a low-cost aerator and water quality in intensive production systems of tilapia with bioflakes at different stocking densities

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19675

Keywords:

Bioflakes; Aeration; Water quality; Density.

Abstract

Among the types of production systems applied in aquaculture, the biofloc culture system (BTF) has been gaining space due to its sustainable techniques. Noteworthy is the low or zero renewal of water, the formation of the microorganism population predominantly autotrophic and heterotrophic, resulting in microbial flakes. Taking into consideration the effectiveness of the system in tilapia farming, this work aimed at the fabrication, implementation, and analysis of the efficiency of a low-cost aerator. To evaluate and control the physical and chemical parameters of the water, 3,780 Nile tilapia fry were used with an initial average biomass of 3±0.5g, distributed in 24 rectangular tanks with a useful volume of 125 liters. The experiment included 6 treatments (T1: 360 fish m-3, T2: 1800 fish m-3, T3: 1080 fish m-3, T4: 1440 fish m-3, T5: 720 fish m-3 and T6: 2160 fish m-3) and four repetitions. The efficiency of the Venturi effect aerator and the water quality parameters were analyzed. Comparisons of the averages were performed using Tukey's test at 5% significance. From the dissolved oxygen analysis, it was possible to conclude that the aerator Venturi effect was efficient during the experiment, meeting the desired levels, also taking into consideration the ease of applicability and low cost for its development. Through the analysis of the physical-chemical parameters of the water and the mortality rates during the experiment, it can also be concluded that the safest density to operate using the bioflocci is up to 720 fish m-3.

References

Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176 (3-4), 227-235. 10.1016/S0044-8486(99)00085-X

Avnimelech, Y., & Ritvo, G. (2003). Shrimp and fishpond soils: processes and management. Aquaculture, 220 (1-4), 549-567. 10.1016/S0044-8486(02)00641-5

Avnimelech, Y. (2006). Bio-filters: The need for an new comprehensive approach. Aquacultural Engineering, 34 (3), 172-178. 10.1016/j.aquaeng.2005.04.001

Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264 (1-4), 140-147. 20. 10.1016/j.aquaculture.2006.11.025.

Avnimelech, Y., Verdegem, M. C. J., Kurup, M., & Keshavanath, P. (2008). Sustainable land-based aquaculture: rational utilization of water, land and feed resources. Mediterranean Aquaculture Journal, 1 (1), 45-55. 10.21608/maj.2008.2663

Avnimelech, Y. (2009). Biofloc Technology: a pratical guidebook. World Aquaculture Society, 182p.

Arnold, S. J., Sellars, M. J., Crocos, P., & Coman, G. J. (2006). An evaluation of stocking density on the intensive production of juvenile brown tiger shrimp (Penaeus esculentus) Aquaculture, 256 (1-4), 174–179. 10.1016/j.aquaculture.2006.01.032

Brandão, P. (2015). Oxigênio renovado – Piscicultor inventou um aerador simples e barato, que recicla água sem gastos com energia elétrica. Revista Globo Rural, 30 (358), 56-58.

Boyd, C. E. (1998). Pond water aeration systems. Aquacultural Engineering, 18 (1), 9-40. 10.1016/S0144-8609(98)00019-3

Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H., & Pearson, D. C. (2003). Nutrient and microbial dynamics in high-intensive, zero-exchange shrimp ponds in Belize. Aquaculture, 219 (1-4), 393-411. 10.1016/S0044-8486(02)00575-6

Chien, Y. H. (1992). Water quality requirements and management for marine shrimp culture: Water quality requirements and management for marine shrimp culture. Keelung, Taiwan: Department of Aquaculture. 144-156.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35 (6) 1039-1042. 10.1590/S1413-70542011000600001

Food and Agriculture Organization. FAO. (2016). The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. Rome: FAO. 253p.

Food and Agriculture Organization. FAO. (2018). The state of world fisheries and aquaculture. Meeting the sustainable development goals. Rome: FAO. 11p.

Furtado, P. S., Poersch, L. H., Wasielesky, W. J. (2014). The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquaculture International, 23, 345-358. 10.1007/s10499-014-9819-x

Gomez, K. A., Gomez, A. A. (1984). Statistical procedures for agricultural research, (2nd ed.), John Willey & Sons.

Hargreaves, J. A. (2006). Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering, 34 (3), 344-363. 10.1016/j.aquaeng.2005.08.009

Lemos, D., Toro, A. N. del, Córdova-Murueta, J. H., & Garcia-Carreño, F. (2004). Testing feeds and feed ingredients for juvenile pink shrimp Farfantepenaeus paulensis: in vitro determination of protein digestibility and proteinase inhibition. Aquaculture, 239 (1-4), 307-321. 10.1016/j.aquaculture.2004.05.032

McGraw, W., Teichert-Coddington, D. R., Rouse, D. B., & Boyd, C. E. (2001). Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture, 199 (3-4), 311-321. 10.1016/S0044-8486(01)00530-0.

Medeiros, V. A., Fontoura, G. A. T., Dezotti, M., & Sant'anna, G. L. (2005). Avaliação do efeito das salinidades e da adição de um suplemento nutricional no tratamento biológico de um efluente industrial complexo. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental, Campo Grande. p. 1-15.

Moss, K. R. K & Moss, S. M. (2004). Effects of artificial substrate and stocking density on the nursery production of Pacific white shrimp Litopenaeus vannamei. Journal of the World Aquaculture Society, 35 (4), 536-542. 10.1111/j.1749-7345.2004.tb00121.x

Piccin, J. S., Rissini, A. L., Freddi, J. J., Koch, M. M., Brião, V. B., & Hemkemeier, M. (2010). Otimização de sistemas de autoaspiração de ar tipo Venturi para tratamento de água ferruginosa. Revista Brasileira de Engenharia Agrícola e Ambiental, 14 (5), 531-537. 10.1590/S1415-43662010000500011.

Ray, A. (2012). Biofloc technology for super-intensive shrimp culture. In: Avnimelech Y, editor. Biofloc Technology - a practical guide book, (2nd ed.), The World Aquaculture Society. p. 167-188.

Santos, C. V. F., Sá, C. B., Antunes, W. L., Freitas, F. B. V., Silva, O. P., & Santos, H. S. (2017). Construção e avaliação de um aerador feito com material de baixo custo. Revista de Engenharia da Faculdade Salesiana, 6, 35-46. www.fsma.edu.br/RESA/Edicao6?FSMA_RESA_2017_2_05.pdf.

Silva, K. R., Wasielesky Jr, W., & Abreu, P. C. (2013). Nitrogen and phosphorus dynamics in the Biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44 (1), 30-41. 10.1111/jwas.12009.

Von Sperling, V. M. (1996). Princípios básicos do tratamento de esgotos. (2nd ed.), Editora UFMG, 211p.

Xu, W. J., Pan, L. Q., Zhao, D. H., & Huang, J. (2012). Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture, 350-353, 147-153. 10.1016/j.aquaculture.2012.04.003.

Zar, J. H. (2010). Biostatistical Analysis. (5th ed.), Prentice Hall.

Downloads

Published

03/09/2021

How to Cite

ROCHA, E. O.; FEIDEN, A. .; SIQUEIRA, J. A. C.; TOKURA, L. K.; TAVARES, S. G. .; SILVEIRA, V. F.; VILLA, B. de; NASCIMENTO, L. F. J. do .; DEVENS, K. U. . Evaluation of the efficiency of a low-cost aerator and water quality in intensive production systems of tilapia with bioflakes at different stocking densities. Research, Society and Development, [S. l.], v. 10, n. 11, p. e350101119675, 2021. DOI: 10.33448/rsd-v10i11.19675. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19675. Acesso em: 21 dec. 2024.

Issue

Section

Agrarian and Biological Sciences