Stress analysis of a single prosthesis on a poorly positioned implant

Authors

DOI:

https://doi.org/10.33448/rsd-v10i11.19815

Keywords:

Dental implants; Finite Element Analysis; Prosthodontics.

Abstract

The mechanical positioning behavior of a mal-positioned implant was evaluated in the finite element method. Models were created in SolidWorks Professional 2013® software with a single implant rehabilitation. The following were analyzed: Control Group, crown aligned to the implant long axis; Experimental Group, crown shifted 3 mm mesial proximally to the implant axis. Compressive stresses in cortical and medullary bone, and Von Mises stresses in implants and components were evaluated. With 100 N occlusal loading at 5 points. The peak von Mises stresses in the prosthetic screw of the experimental group (138.45 MPa) were 43.60% higher compared to the control group (96.41 MPa). The stresses in the prosthetic pillar were localized in the abutment region and the experimental group showed (875.63 MPa), 28% higher than the control group (683.88 MPa). Regarding the implant, the maximum stress peaks were located in the implant platform and the experimental group showed stress values of (1081.4) MPa and was 26.42% higher than the control 855.39 MPa. The cortical bone tissue of the experimental group showed shear stress values 10.81% higher than the control. The stress values were 151.36 MPa for the experimental group and (136.59 Mpa) for the control. The medullary bone showed shear stress (8.31 MPa) and was 12.29% higher than the control (7.40 MPa). A maximum peak was obtained in the cervical region of the medullary bone, adjacent to the cortical bone. The experimental group with a mal-positioned implant showed the highest maximum stresses for all simulated prosthetic components.

Author Biographies

William Cunha Brandt, Universidade Santo Amaro

Possui graduação em Odontologia (2004), além de Mestrado (2007) e Doutorado (2010) em Materiais Dentários e aperfeiçoamento em Endodontia Clínica (2007) pela Faculdade de Odontologia de Piracicaba (FOP) - Universidade Estadual de Campinas (UNICAMP). Trabalhou como professor na pós graduação de Prótese Dentária da Universidade de Taubaté - UNITAU. Atualmente é professor da pós-graduação em Implantodontia da Universidade de Santo Amaro - UNISA. Possui experiência na área de Odontologia, com ênfase em pesquisa sobre Materiais e Técnicas Odontológicas, atuando principalmente nos seguintes temas: Polímeros odontológicos, foto-ativação, cerâmicas odontológicas e testes mecânicos.

Letícia Cristina Cidreira Boaro, Universidade Santo Amaro

Possui graduação em Odontologia pela Universidade de São Paulo (2006) e mestrado (2008) e Doutorado (2011) em Odontologia (Materiais Dentários) pela Universidade de São Paulo. Tem experiência na área de Odontologia, com ênfase em Materiais Odontológicos, atuando principalmente nos seguintes temas: caracterização mecânica de compósitos, análises de qualidade de interface de restaurações de compósitos e tensão de polimerização.

Milton Edson Miranda, Faculdade São Leopoldo Mandic

Graduado em Odontologia pela Universidade Federal de Minas Gerais (1969), Mestrado( Ohio State University-USA -1983) e Doutorado( Universidade de São Paulo-S.P.-2001). Atualmente leciona no Curso de Pós--Graduação do Centro de Pesquisas Odontológicas São Leopoldo Mandic(www.slmandic.edu.br ) e trabalha como profissional liberal.(www.memiranda.com.br).

References

Aglietta, M., Blasi, A., & Salvi, G. E. (2012). Clinical and radiographic changes at implants supporting single-unit crowns ( SCs ) and fixed dental prostheses ( FDPs ) with one cantilever extension . A retrospective study. 1–6. https://doi.org/10.1111/j.1600-0501.2011.02391.x

Alom, G., Kwon, H. B., Lim, Y. J., & Kim, M. J. (2021). Three-dimensional finite element analysis of buccally cantilevered implant-supported prostheses in a severely resorbed mandible. Journal of Advanced Prosthodontics, 13(1), 12–23. https://doi.org/10.4047/jap.2021.13.1.12

Camargo, B., Drummond, L., Ozkomur, A., Villarinho, E., Rockenbach, M., Teixeira, E., & Shinkai, R. (2018). Implant Inclination and Cantilever Length Are Not Associated with Bone Loss in Fixed Complete Dentures: A Prospective Study. The International Journal of Prosthodontics, 32(1), 17–19. https://doi.org/10.11607/ijp.6022

da Silva, E., dos Santos, D., Sonego, M., Gomes, J., Pellizzer, E., & Goiato, M. (2018). Does the Presence of a Cantilever Influence the Survival and Success of Partial Implant-Supported Dental Prostheses? Systematic Review and Meta-Analysis. The International Journal of Oral & Maxillofacial Implants, 33(4), 815–823. https://doi.org/10.11607/jomi.6413

Desai, S. R., Desai, M. S., Katti, G., & Karthikeyan, I. (2015). Evaluation of design parameters of eight dental implant designs : A two ‑ dimensional finite element analysis. June. https://doi.org/10.4103/1119-3077.97308

Drago, C. (2016). Cantilever Lengths and Anterior-Posterior Spreads of Interim , Acrylic Resin , Full-Arch Screw-Retained Prostheses and Their Relationship to Prosthetic Complications. 00, 1–6. https://doi.org/10.1111/jopr.12426

Filius, M. A. P., Vissink, A., Cune, M. S., Raghoebar, G. M., & Visser, A. (2018). Effect of implant therapy on oral health-related quality of life (OHIP-49), health status (SF-36), and satisfaction of patients with several agenetic teeth: Prospective cohort study. Clinical Implant Dentistry and Related Research, 20(4), 592–597. https://doi.org/10.1111/cid.12625

Greenstein, G., & Cavallaro JR, J. (2010). ABSTRACT. The Journal of the American Dental Association, 141(10), 1221–1230. https://doi.org/10.14219/jada.archive.2010.0049

Halg, G. A., Schmid, J., & Hammerle, C. H. F. (2008). Bone level changes at implants supporting crowns or fixed partial dentures with or without cantilevers. 983–990. https://doi.org/10.1111/j.1600-0501.2008.01556.x

Hasan, I., Heinemann, F., & Bourauel, C. (2014). Biomechanical finite element analysis of self-tapping implants with different dimensions inserted in two bone qualities. 59(3), 203–211. https://doi.org/10.1515/bmt-2013-0109

Huang, Y., & Wang, J. (2019). Mechanism of and factors associated with the loosening of the implant abutment screw: A review. Journal of Esthetic and Restorative Dentistry, 31(4), 338–345. https://doi.org/10.1111/jerd.12494

Manea, A., Bran, S., Dinu, C., Rotaru, H., Barbur, I., Crisan, B., Armencea, G., Onisor, F., Lazar, M., Ostas, D., Baciut, M., Vacaras, S., Mitre, I., Crisan, L., Muresan, O., Roman, R., & Baciut, G. (2019). Principles of biomechanics in oral implantology. Medicine and Pharmacy Reports, 92(3), 14–19. https://doi.org/10.15386/MPR-1512

Max, A., Walter, C., Ehbauer, S., Zwiener, I., Ziebart, T., Al-nawas, B., & Oliver, M. (2015). Analysis of implant-failure predictors in the posterior maxilla : A retrospective study of 1395 implants. Journal of Cranio-Maxillofacial Surgery, 1–7. https://doi.org/10.1016/j.jcms.2015.01.004

Mosavar, A., Ziaei, A., & Kadkhodaei, M. (2015). The Effect of Implant Thread Design on Stress Distribution in Anisotropic Bone with Different Osseointegration Conditions : 1317–1326. https://doi.org/10.11607/jomi.4091

Muangsisied, S., Chantarapanich, N., Veerasakul, M. S., & Inglam, S. (2021). Effect of implant diameter and cortical bone thickness on biomechanical performance of short dental implant-supported distal cantilever: A finite element study. Engineering Journal, 25(2), 175–182. https://doi.org/10.4186/ej.2021.25.2.175

Ozan, O., & Kurtulmus-Yilmaz, S. (2018). Biomechanical Comparison of Different Implant Inclinations and Cantilever Lengths in All-on-4 Treatment Concept by Three-Dimensional Finite Element Analysis. The International Journal of Oral & Maxillofacial Implants, 33(1), 64–71. https://doi.org/10.11607/jomi.6201

Papaspyridakos, P., Bordin, T. B., Kim, Y. J., El-Rafie, K., Pagni, S. E., Natto, Z. S., Teixeira, E. R., Chochlidakis, K., & Weber, H. P. (2020). Technical Complications and Prosthesis Survival Rates with Implant-Supported Fixed Complete Dental Prostheses: A Retrospective Study with 1- to 12-Year Follow-Up. Journal of Prosthodontics, 29(1), 3–11. https://doi.org/10.1111/jopr.13119

Pjetursson, B. E., Bra, U., Lang, N. P., & Zwahlen, M. (2007). Comparison of survival and complication rates of tooth-supported fixed dental prostheses ( FDPs ) and implant-supported FDPs and single crowns ( SCs ). 97–114. https://doi.org/10.1111/j.1600-0501.2007.01439.x

Premnath, D. K., Prakash, D. N., Tilak, D. B., R, D. K., MP, D. S., & Rheel, D. S. A. (2020). Evaluation of surrounding anatomical structures in implant supported FPD with and without cantilever: An original research. International Journal of Applied Dental Sciences, 6(4), 289–291. https://doi.org/10.22271/oral.2020.v6.i4e.1078

Quirynen, T., Quirynen, M., & Duyck, J. (2015). Prevention of distal extension cantilever fracture in mandibular overdentures . Elsevier Ltd. https://doi.org/10.1016/j.jdent.2015.06.007

Ramos, B., Albrektsson, T., & Wennerberg, A. (2014). ScienceDirect Tilted versus axially placed dental implants : A meta-analysis. Journal of Dentistry. https://doi.org/10.1016/j.jdent.2014.09.002

Rodrigues, I., Zanardi, P., & Sesma, N. (2019). Effect of Abutment Screw Design and Crown/Implant Ratio on Preload Maintenance of Single-Crown Screw-Retained Implant-Supported Prostheses. The International Journal of Oral & Maxillofacial Implants, 34(6), 1397–1403. https://doi.org/10.11607/jomi.7311

Sargolzaie, N., Moeintaghavi, A., & Shojaie, H. (2017). Comparing the Quality of Life of Patients Requesting Dental Implants Before and After Implant. The Open Dentistry Journal, 11(1), 485–491. https://doi.org/10.2174/1874210601711010485

Schmid, E., Morandini, M., Roccuzzo, A., Ramseier, C. A., Sculean, A., & Salvi, G. E. (2020). Clinical and radiographic outcomes of implant-supported fixed dental prostheses with cantilever extension. A retrospective cohort study with a follow-up of at least 10 years. Clinical Oral Implants Research, 31(12), 1243–1252. https://doi.org/10.1111/clr.13672

Storelli, S., Del Fabbro, M., Scanferla, M., Palandrani, G., & Romeo, E. (2018). Implant supported cantilevered fixed dental rehabilitations in partially edentulous patients: Systematic review of the literature. Part I. Clinical Oral Implants Research, 29(May), 253–274. https://doi.org/10.1111/clr.13311

Suedam, V., Tobias, R., Neto, M., Antonio, E., Sousa, C., Rubo, J. H., Rq, J., Shul, W. K. H., Duhd, L., Fdqwlohyhuhg, R. I., Vxssruwhg, L., Sduwldo, H. G., Wr, D., Rffoxvdo, W. K. H., Ri, V., Fldo, D., & Lv, W. (2016). on the stress distribution in peri-implant area RI FDQWLOHYHUHG LPSODQW VXSSRUWHG ¿[ HG SDUWLDO dentures. 6(2013), 114–120.

Tang, C., Liu, S., Zhou, G., Yu, J., Zhang, G., Bao, Y., & Wang, Q. (2012). Nonlinear finite element analysis of three implant – abutment interface designs. April, 101–108. https://doi.org/10.1038/ijos.2012.35

Torrecillas-martinez, L., Monje, A., Catalunya, U. I. De, Lin, G., & Francisco, S. (2014). Effect of Cantilevers for Implant-Supported Prostheses. August. https://doi.org/10.11607/jomi.3660

Zheng, Z., Lin, J., Shinya, A., Matinlinna, J. P., Botelho, M. G., & Shinya, A. (2012). Finite element analysis to compare stress distribution of gold alloy, lithium-disilicate reinforced glass ceramic and zirconia based fixed partial denture. Journal of Investigative and Clinical Dentistry, 3(4), 291–297. https://doi.org/10.1111/j.2041-1626.2012.00167.x

Zurdo, J., Wennstro, J. L., & Roma, C. (2009). Survival and complication rates of implant-supported fixed partial dentures with cantilevers : a systematic review. 59–66. https://doi.org/10.1111/j.1600-0501.2009.01773.x

Downloads

Published

11/09/2021

How to Cite

REIS, F. C. dos S.; BRANDT, W. C. .; BOARO, L. C. C. .; MIRANDA, M. E. Stress analysis of a single prosthesis on a poorly positioned implant. Research, Society and Development, [S. l.], v. 10, n. 11, p. e579101119815, 2021. DOI: 10.33448/rsd-v10i11.19815. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19815. Acesso em: 12 nov. 2024.

Issue

Section

Health Sciences