Antioxidant potential of edible coatings incorporated with unfermented and fermented noni residue extracts




Fruit; Packing; Fermentation; Residue.


The present work aimed to elaborate edible coatings based on chitosan and cassava starch incorporated with bioactive extracts obtained from unfermented and fermented noni residue flour. Initially, noni peel and seed flours were prepared and a mixture of these (NPSF) and noni peel flour (NPF) were used. The flours with initial moisture adjusted to 50 and 70% were submitted to solid state fermentation using the fungus Aspergillus niger. At each time of fermentation, different extracts were obtained in organic solvents (distilled water, 40% ethanol, 80% ethanol and 40% methanol) and evaluated for total phenolic and total flavonoid contents. The extracts from fermented flours with the highest content of total phenolic compounds were obtained in 40% methanol after 24h of FCSN fermentation and in 40% ethanol after 96h of FCN fermentation, these being selected for incorporation in edible coatings. In the next step, coatings containing 1% of cassava starch and varied percentages of chitosan (1 or 2%) and extracts of fermented and unfermented flours (5 or 10%) were prepared. The coatings containing fermented FCSN and FCN showed greater antioxidant activity in vitro by ABTS, DPPH and FRAP methods. Thus, it was showed that the extracts obtained from fermented flours were effective in increasing the antioxidant potential of edible coatings, which may be applied in future work in food preservation.


Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., & Valero, J. R. (2011) Solid-state fermentation of apple pomace using Phanerocheate chrysosporium – Liberation and extraction of phenolic antioxidants. Food Chemistry, 126, 1071–1080.

Alothman, M., Bhat, R., & Karim, A. A. (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia extracted with different solvents. Food Chemistry, 115(3), 785–788.

Assi, R. A., Darwis, Y., Abdulbaqi, I. M., khan, A. A., Vuanghao, L., & Laghari, M. H. (2017) Morinda citrifolia (Noni): A comprehensive review on its industrial uses, pharmacological activities and clinical trials. Arabian Journal of Chemistry, 10, 691–707.

BR 10 2020 013265 2. Extratos enriquecidos de compostos fenólicos Totais e flavonoides obtidos a partir da casca e Mistura de casca e sementes de noni (morinda citrifolia l.) Submetidas à processo fermentativo. Luciana Cristina Lins de Aquino Santana, Simone Aparecida de Lima Scaramussa, Carlos Renato Vieira do Nascimento. Patente depositada no INPI em 29/06/2020.

Calva-Estrada, S. J., Jiménez-Fernández, M., & Lugo-Cervantes, E. (2019). Protein-based films: advances in the development of biomaterials applicable to food packaging. Food Engineering Reviews, 11, 78–92.

Chirinos, R., Rogez, H., Campos, D., Pedreschi, R., & Larondelle, Y. (2006) Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruýz & Pavon) Tubers. Separation and Purification Technology, 55, 217-225, 2006.

Costa, A. B., Oliveira, A. M. C., Silva, A. M. O., Mancini-Filho, J., & Lima, A. (2013) Atividade antioxidante da polpa, casca e semente do noni (Morinda citrifolia L.). Revista Brasileira de Fruticultura, 35(2), 345-354.

Dey, T. B., Chakraborty, S., Jain, K. K., Sharma, A., & Kuhad, R. C. (2016) Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends in Food Science & Technology, 53, 60-74.

Dhumal, C. V., & Sarkar, P. (2018) Composite edible films and coatings from food-grade biopolymers

Journal of Food Science and Technology, 55(11), 4369–4383.

Hassan, B., Shahid Chatha, S. A., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. International Journal of Biological Macromolecules, 109, 1095–1107.

Jamal, P., Idris, Z. M., & Alam, Z. (2011) Effects of physicochemical parameters on the production of phenolic acids from palm oil mill effluent under liquid-state fermentation by Aspergillus niger. Food Chemistry, 124(4), 1595-1602.

Koçak, E., & Pazır, F. (2018) Effect of Extraction Methods on Bioactive Compounds of Plant Origin. Turkish Journal of Agriculture - Food Science and Technology, 6(6): 663-675.

Kwon, Y. I. I., Vattem, D. A., & Shetty, K. (2006) Evaluation of clonal herbs of Laminaceae species against diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15, 107-118.

Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005) Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91, 571–577.

Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004) Estimation of scavenging activity of phenolic compounds using the ABTS (*+) assay. Journal of Agricultural and Food Chemistry, 52, 4669-4674.

Nunes, A. C. D., Neto, A. F., Nascimento, I. K. S., Oliveira, F. J. V., & Mesquita, R. V. C. (2017) Armazenamento de mamão ‘formosa’ revestido à base de fécula de mandioca. Revista de Ciências Agrárias, 40, 254-263.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. A

Ribeiro, M., Estevinho, B. N., & Rocha, F. (2021) Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food and Bioprocess Technology, 14, 209–231.

Rodrigues, H. G. A., Siqueira, A. C. P., & Santana, L. C. L. A. (2020) Aplicação de revestimentos comestíveis à base de quitosana e fécula de mandioca incorporados com extrato da semente de tamarindo na conservação de goiabas. Research, Society and Development, 9(6), 1-25.

Shah, M. A., John, S. J. D., & Mir, S. A. (2014). Plant extracts as natural antioxidants in meat and meat products. Meat Science, 98(1), 21–33.

Shetty, K., Curtis, O. F., Levin, R. E., Witkowsky, R., & Ang, W. (1995) Prevention of verification associated with in vitro shoot culture of oregano (Origanum vulgare) by Pseudomonas spp. Journal of Plant Physiology, 147, 447-451.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidante activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675.

Zhang, X-Y., Chen, J., Li, X-L., Yi, K., Ye, Y., Liu, G., Wang, S-F., Hu, H-L., Zou, L., & Wang, Z-G. (2017) Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during Aspergillus niger fermentation. Journal of Functional Foods, 32, 375-381.



How to Cite

SCARAMUSSA, S. A. de L. .; NASCIMENTO, C. R. V. do .; SANTANA, L. C. L. de A. . Antioxidant potential of edible coatings incorporated with unfermented and fermented noni residue extracts. Research, Society and Development, [S. l.], v. 10, n. 12, p. e167101220213, 2021. DOI: 10.33448/rsd-v10i12.20213. Disponível em: Acesso em: 14 apr. 2024.



Agrarian and Biological Sciences