Flavonoids from plants of the Lavandula genus as potential inhibitors of key proteins of SARS-CoV-2

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20580

Keywords:

SARS-CoV-2; Proteins; Flavonoids; In silico.

Abstract

Objective: to evaluate the profile of interactions between flavonoids against key proteins of SARS-CoV-2 infection, and secondarily, to analyze the properties of these chemical constituents against Lipinski's Rule as potential drug candidates. Methodology: This study is characterized as a quantitative descriptive experimental type, through computational methods, where AutoDock Tools, AutoDock Vina, Biovia Discovery Studio and ChimeraX were used to perform the molecular coupling between the main flavonoids present in plants from the Lavandula genus with the M protein and the complex between the Angiotensin-2 Converting Enzyme and the S protein receptor binding domain of SARS-CoV-2. Results: Analyzing the isolated interactions of each flavonoid with the proteins, it is noted that the compounds showed more favorable interactions with the Angiotensin 2 Converting Enzyme and the receptor binding domain. For Lipinski's rule, Delphinidin presented two violations, being considered, in this context, an unpromising molecule. Conclusion: It is concluded, therefore, that flavonoids in silico present an inhibitory potential for the tested proteins, being more favorable to the Angiotensin 2 Converting Enzyme complex with the receptor binding domain. In view of Lipinski's rule, only Delphinidin showed low potential as a drug candidate, however, the use of nanocarriers could circumvent some of its limitations.

Author Biography

Neirigelson Ferreira de Barros Leite, Christus Faculdade do Piauí

Licenciado em Química pela Universidade Federal do Piauí (UFPI). Mestrando em Química pela UESPI. Docente na Christus Faculdade do Piauí.

References

Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71188-3

Almeida, D. F. L. dos S. (2017). Estudo das vias metabólicas das plantas na síntese de pigmentos naturais. [Master’s tesis] https://bdigital.ufp.pt/handle/10284/6104

Decaro, N., & Lorusso, A. (2020). Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Veterinary microbiology, 244, 108693. https://doi.org/10.1016/j.vetmic.2020.108693

Ferreira, A. R. A. (2014). Uso de óleos essenciais como agentes terapêuticos. [Master’s tesis] https://bdigital.ufp.pt/handle/10284/4513

Frecer, V., & Miertus, S. (2020). Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease. RSC Advances, 10(66), 40244–40263. https://doi.org/10.1039/d0ra08304f

Gerhardt, T. E., & Silveira, D. T. (2009). Métodos de Pesquisa. Editora da UFRGS. http://hdl.handle.net/10183/52806

Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30(2), 374–381. https://doi.org/10.1590/s0100-40422007000200026

Gomes, J. N. S. (2019). Estudo in silico de derivados acrinídicos com potencial atividade antitumoral. Trabalho de Conclusão de Curso, Universidade Estadual da Paraíba, Campina Grande, Brasil.

Hamid, A. A., Aiyelaagbe, O. O., Usman, L. A. Essential oils: its medicinal and pharmacological uses. International Journal of Current Research, 3(2), 86-98. http://www.journalcra.com/sites/default/files/issue-pdf/406.pdf

Junior, V. F. V., Pinto, A. C., & Maciel, M. A. M. (2005, June). Plantas medicinais: cura segura? Química Nova, 28(3), 519-528. https://doi.org/10.1590/S0100-40422005000300026

Lis-Balchin, M. (2002). Lavender: The Genus Lavandula (Medicinal and Aromatic Plants - Industrial Profiles). (1st ed.). CRC Press.

Machado, B. F. M. T., & Junior, A. F. (2011). ÓLEOS ESSENCIAIS: ASPECTOS GERAIS E USOS EM TERAPIAS NATURAIS. Cadernos Acadêmicos, 3(2), 105–127. http://www.portaldeperiodicos.unisul.br/index.php/Cadernos_Academicos/article/view/718

Malik Y. A. (2020). Properties of Coronavirus and SARS-CoV-2. The Malaysian journal of pathology, 42(1), 3–11.

Mirza, M. U., & Froeyen, M. (2020). Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. Journal of Pharmaceutical Analysis, 10(4), 320–328. https://doi.org/10.1016/j.jpha.2020.04.008

Probst, I. S. (2014). Atividade antibacteriana de óleos essenciais e avaliação de potencial sinergético. [Master’s tesis]. https://repositorio.unesp.br/handle/11449/87926?show=full

Salum, L. B. (2007). Estudos in silico no planejamento de candidatos a novos fármacos na terapia do câncer de mama e de reposição hormonal. [Master’s tesis]. https://www.teses.usp.br/teses/disponiveis/76/76132/tde-09042008-121318/pt-br.php

Santos, A. L. P., Lima, G. W. R., & Moraes, C. A. P. (2019). Estudo do potencial do óleo essencial de Lavandula angustiofolia L. como antimicrobiano. InterfacEHS – Saúde, Meio Ambiente e Sustentabilidade, 14(1), 63–72. http://www3.sp.senac.br/hotsites/blogs/InterfacEHS/wp-content/uploads/2019/07/221_InterfaEHS_Artigo-63-72.pdf

SILVA, G. L. F. (2016). KNECHTEL, Maria do Rosário. Metodologia da pesquisa em educação: uma abordagem teórico-prática dialogada. Curitiba: Intersaberes, 2014 (Resenha). Praxis Educativa, 11(2), 531–534. https://doi.org/10.5212/praxeduc.v.11i2.0013

Silva, S. M. (2015). Sistemas agrícolas e adubação na biomassa e óleo essencial de lavanda (Lavandula dentata L.) [Doctoral dissertation]. Universidade Federal de Uberlândia. https://repositorio.ufu.br/handle/123456789/12080

Sousa, F. C. F., Melo, C. T. V., Citó, M. C. O., Félix, F. H. C., Vasconcelos, S. M. M., Fonteles, M. M. F., Barbosa Filho, J. M., & Viana, G. S. B. (2008). Plantas medicinais e seus constituintes bioativos: uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. Revista Brasileira de Farmacognosia, 18(4), 642–654. https://doi.org/10.1590/s0102-695x2008000400023

Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International journal of molecular sciences, 19(6), 1578. https://doi.org/10.3390/ijms19061578

Viegas Jr, C., Bolzani, V. D. S., & Barreiro, E. J. (2006). Os produtos naturais e a química medicinal moderna. Química Nova, 29(2), 326–337. https://doi.org/10.1590/s0100-40422006000200025

Xavier, A. L. (2012). Design Teórico, Síntese Multicomponente e Comprovação Experimental da Atividade Antinociceptiva de Pirimidinonas em Camundongos através das vias Intraperitoneal e Oral. [Master’s tesis]. https://repositorio.ufpe.br/handle/123456789/11945

Yuki, K., Fujiogi, M., & Koutsogiannaki, S. (2020). COVID-19 pathophysiology: A review. Clinical immunology (Orlando, Fla.), 215, 108427. https://doi.org/10.1016/j.clim.2020.108427

Published

23/09/2021

How to Cite

GOMES, J. G. F. .; LEITE, N. F. de B. . Flavonoids from plants of the Lavandula genus as potential inhibitors of key proteins of SARS-CoV-2. Research, Society and Development, [S. l.], v. 10, n. 12, p. e345101220580, 2021. DOI: 10.33448/rsd-v10i12.20580. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20580. Acesso em: 16 nov. 2024.

Issue

Section

Health Sciences