Diffusive properties of colloidal charged particles in a quasi-one-dimensional confinement
DOI:
https://doi.org/10.33448/rsd-v10i12.20595Keywords:
Diffusion; Colloids; Single-FileAbstract
Diffusive properties of colloidal crystals in a quasi-one-dimensional channel are studied using numerical simulations. In order to study the influence of the attractive interaction between particles, it was introduced as an artificial dimensionless parameter β in the attractive term of the interaction potential. Changing the value of β, we can tune the effect of attraction between particles. We show that charged particles can change their mobility and the diffusion exponent of a one-chain like system. Variation on exponent diffusion can be induced by tuning the attractive part of interaction potential, making possible the existence of diffusive regimes between single-file diffusion (SFD) and normal diffusion, without changing confinement strength. System stoichiometry was changed, imposing particles in different arrangements in small clusters, which varies the diffusive behaviour. If stoichiometry is different from 1:1, it is possible to have particles with equal charges but with different mobilities. Another important observation is that mean-square displacement (MSD) for different charges is different for different values.
References
Carvalho, J. C. N., Ferreira, W. P., Farias G. A., & Peeters, F. M. (2011). Yukawa particles confined in a channel and subject to a periodic potential: Ground state and normal modes. Phys. Rev. B 83(9), 094109. https://doi.org/10.1103/PhysRevB.83.094109
Carvalho, J. C. N., Nelissen, K., Ferreira, W. P., Farias G. A., & Peeters, F. M. (2012). Diffusion in a quasi-one-dimensional system on a periodic substrate. Phys. Rev. E 85(2), 021136. https://doi.org/10.1103/PhysRevE.85.021136
Coupier, G., Jean, M. S., & Guthmann, C. (2006). Single file diffusion in macroscopic Wigner rings. Phys. Rev. E 73(3), 031112. https://doi.org/10.1103/PhysRevE.73.031112
Delfau, J.-B., Coste, C., & Saint Jean, M. (2011). Single-file diffusion of particles with long-range interactions: Damping and finite-size effects. Phys. Rev. E 84(1), 011101. https://doi.org/10.1103/PhysRevE.84.011101
Doyle, D. A., Cabral, J. M., Pfuetzner, A. K., Gulbis, J. M., Cohen, S. L, Chait, B. T., & MacKinnon, R. (1998). The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science 280(5360), 69-77. https://doi.org/10.1126/science.280.5360.69
Ferreira, W. P., Carvalho, J. C. N., Oliveira, P. W. S., Farias G. A., & Peeters, F. M. (2008). Structural and dynamical properties of a quasi-one-dimensional classical binary system. Phys. Rev. B 77(1), 014112. https://doi.org/10.1103/PhysRevB.77.014112
Frenkel, D., & Smit, B. (2002). Understanding Molecular Simulation: from algorithms to application: Amsterdam: Academic Press. https://doi.org/10.1016/B978-0-12-267351-1.X5000-7.
Galvan-Moya, J. E., Lucena, D., Ferreira, W. P., & Peeters, F. M. (2014). Magnetic particles confined in a modulated channel: Structural transitions tunable by tilting a magnetic field. Phys. Rev. E 89(3), 032309. https://doi.org/10.1103/PhysRevE.89.032309
Gillespie, D. T. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54(2), 2084. https://doi.org/10.1103/PhysRevE.54.2084
Gillespie, D. T. (1996). The mathematics of Brownian motion and Johnson noise. Am. J. Phys. 64(3), 225. https://doi.org/10.1119/1.18210
Harris, E. T. (1965). Diffusion with “collisions” between particles. J. Appl. Probab 2(2), 323-338. https://doi.org/10.2307/3212197
Hernandez, J. A., & Fischbarg, J. (1992). Kinetic analysis of water transport through a single-file pore. J. Gen. Physiol. 99(4), 645-662. https://doi.org/10.1085/jgp.99.4.645
Kollmann, M. (2003). Single-file Diffusion of Atomic and Colloidal Systems: Asymptotic Laws. Phys. Rev. Letters 90(18), 180602. https://doi.org/10.1103/PhysRevLett.90.180602
Konig, H., Hund, R., Zahn, K., & Maret, G. (2005). Experimental realization of a model glass former in 2D. Eur. Phys. J. E 18, 287-293. https://doi.org/10.1140/epje/e2005-00034-9
Leunissen, M. E., Christova, C. G., Hynninen, A. P., Royall, C. P., Campbell, A. I., Imhof, A., Dijkstra, M., van Roji, R., & van Blaaderen, A. (2005). Ionic colloidal crystals of oppositely charged particles. Nature (London) 437, 235-240. https://doi.org/10.1038/nature03946
Lucena, D., Galvan-Moya, J. E., Ferreira, W. P., & Peeters, F. M. (2014). Single-file and normal diffusion of magnetic colloids in modulated channels. Phys. Rev. E 89(3), 032306. https://doi.org/10.1103/PhysRevE.89.032306
Lucena, D., Tkachenko, D. V., Nelissen, K., Misko, V. R., Ferreira, W. P., Farias, G. A., & Peeters, F. M. (2012). Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel. Phys. Rev. E 85(3), 031147. https://doi.org/10.1103/PhysRevE.85.031147
Meier M. W., & Olsen, H. D. (1989). Atlas of Zeolite framework types (second revised edition). Structure Commission of the international Zeolite Association 35(5), 875-875. https://doi.org/10.1002/aic.690350523
Morais-Cabral, J. H., Zhou, Y., & MacKinnon, R. (2001). Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37-42. https://doi.org/10.1038/35102000
Nelissen, K., Misko, V. R., & Peeters, F. M. (2007). Single-file diffusion of interacting particles in a one-dimensional channel. Europhys. Lett. 80(5), 56004. https://doi.org/10.1209/0295-5075/80/56004
Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S., & Murray, C. B. (2006). Structural diversity in binary nanoparticle superlattices. Nature (London) 439, 55-59. https://doi.org/10.1038/nature04414
Wei, Q.-H., Bechinger, C., & Leiderer, P. (2000). Single-File Diffusion of Colloids in One-Dimensional Channels. Science 287(5453), 625-627. 10.1126/science.287.5453.625
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Levi Rodrigues Leite; Jorge Luiz Bezerra de Araújo; Leandro Jader Pitombeira Xavier; Vagner Henrique Loiola Bessa; João Cláudio Nunes Carvalho; Diego de Lucena Camarão
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.