Melamine-formaldehyde-silica and melamine-silica-cellulose composites in removing Iron and N-ammonia from landfill leachate

Authors

DOI:

https://doi.org/10.33448/rsd-v10i12.20602

Keywords:

Cellulose; Landfill leachate; Melamine-silica.

Abstract

Melamine-formaldehyde based composites are versatile and can be applied in the treatment of contaminated effluents such as landfill leachate that have a high pollutant load, as they are rich in nitrogen atoms, the sites allow interaction with molecules, atoms or ions of interest. Aiming compares the efficiency of two materials based on the same precursors, evaluating the efficiency of two composites, melamine-silica (PMF-Si) and melamine-silica-cellulose (Cel-M-Si) in removing iron and ammonia nitrogen in landfill leachate. Adsorption kinetics showed that PMF-Si and Cel-M-Si composites adsorb iron from 30 min, with an average removal of ~ 93.4%. Application of Cel-M-Si to removed leachate ca. 75.7% iron and 76.6% ammonia nitrogen. In contrast, it was observed that PMF-Si had a removal efficiency of 70.9% for iron and 55.0% for ammonia nitrogen. The comparative tests allowed to conclude that the composites PMF-Si and Cel-M-Si have potential for the treatment of landfill leachate, being low cost materials and easy synthesis.

References

Avan, A. A., Filik, H., & Demirata, B. (2021). Solid-phase extraction of Cr(VI) with magnetic melamine–formaldehyde resins, followed by its colorimetric sensing using gold nanoparticles modified with p-amino hippuric acid. Microchemical Journal, 164(October 2020). https://doi.org/10.1016/j.microc.2021.105962

Baniasadi, H., Ajdary, R., Trifol, J., Rojas, O. J., & Seppälä, J. (2021). Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydrate Polymers, 266(April). https://doi.org/10.1016/j.carbpol.2021.118114

Bretterbauer, K., Schwarzinger, C., & Cyanuric, K. (2012). Melamine Derivatives – A Review on Synthesis and Application Dedicated to Prof . Dr . Harald Schmidt on th e occasion of his 70 th birthday. Current Organic Synthesis, 9, 342–356.

Conselho Nacional do Meio Ambiente- CONAMA. (2011). Resolução N° 430, De 13 De Maio De 2011. 8. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646

González-Cortés, J. J., Almenglo, F., Ramírez, M., & Cantero, D. (2021). Simultaneous removal of ammonium from landfill leachate and hydrogen sulfide from biogas using a novel two-stage oxic-anoxic system. Science of the Total Environment, 750, 141664. https://doi.org/10.1016/j.scitotenv.2020.141664

Hasanoĝlu, A., Romero, J., Pérez, B., & Plaza, A. (2010). Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal, 160(2), 530–537. https://doi.org/10.1016/j.cej.2010.03.064

Hijazi, O., Abdelsalam, E., Samer, M., Amer, B. M. A., Yacoub, I. H., Moselhy, M. A., Attia, Y. A., & Bernhardt, H. (2020). Environmental impacts concerning the addition of trace metals in the process of biogas production from anaerobic digestion of slurry. Journal of Cleaner Production, 243, 118593. https://doi.org/10.1016/j.jclepro.2019.118593

Kabir, A., Dunlop, M. J., Acharya, B., Bissessur, R., & Ahmed, M. (2018). Polymeric composites with embedded nanocrystalline cellulose for the removal of iron(II) from contaminated water. Polymers, 10(12), 1–16. https://doi.org/10.3390/polym10121377

Köche, J. C. (2011). Fundamentos de metodologia científica. In Editora Vozes Ltda. https://doi.org/10.1590/S1517-97022003000100005

Li, J., Li, Q., Li, L. shuang, & Xu, L. (2017). Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere. Chemical Engineering Journal, 320, 501–509. https://doi.org/10.1016/j.cej.2017.03.073

Li, M., Liu, H., Chen, T., Chen, D., Wang, C., Wei, L., & Wang, L. (2020). Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: Performance and mechanism. Science of the Total Environment, 703, 135604. https://doi.org/10.1016/j.scitotenv.2019.135604

Liu, Z., Zhou, X., & Liu, C. jun. (2019). N-doped porous carbon material prepared via direct ink writing for the removal of methylene blue. Diamond and Related Materials, 95(April), 121–126. https://doi.org/10.1016/j.diamond.2019.04.010

Melo, J. C. P., Silva Filho, E. C., Santana, S. A. A., & Airoldi, C. (2019). Maleic anhydride incorporated onto cellulose and thermodynamics of cation exchange process at the solid/liquid interface. Colloids Surfaces A Physicochem. Eng. Asp, 346, 138–145.

Merline, D. J., Vukusic, S., & Abdala, A. A. (2013). Melamine formaldehyde: Curing studies and reaction mechanism. Polymer Journal, 45(4), 413–419. https://doi.org/10.1038/pj.2012.162

Mesquita Junior, J. S. de, Figueiredo, F. C., Santos, E. C. dos, Silva, D. S. N., & Santos Júnior, J. R. dos. (2021). Cellulose (Mangifera indica) modified by melamine-silica applied in the treatment of effluents with chemically assisted precipitation. Research, Society and Development, 10(6), 1–29.

Miranda, C., Soares, A. S., Coelho, A. C., Trindade, H., & Teixeira, C. A. (2021). Environmental implications of stored cattle slurry treatment with sulphuric acid and biochar: A life cycle assessment approach. Environmental Research, 194(January). https://doi.org/10.1016/j.envres.2020.110640

Mohammed, N., Lian, H., Islam, M. S., Strong, M., Shi, Z., Berry, R. M., Yu, H. Y., & Tam, K. C. (2021). Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chemical Engineering Journal, 417(December 2020). https://doi.org/10.1016/j.cej.2021.129237

Nakanishi, Y., Hara, Y., Miyamoto, R., Nakanishi, K., & Kanamori, K. (2021). Highly porous melamine-formaldehyde monoliths with controlled hierarchical porosity toward application as a metal scavenger. Materials Advances, 2(8), 2604–2608. https://doi.org/10.1039/d1ma00034a

Oppong-Anane, A. B., Deliz Quiñones, K. Y., Harris, W., Townsend, T., & Bonzongo, J. C. J. (2018). Iron reductive dissolution in vadose zone soils: Implication for groundwater pollution in landfill impacted sites. Applied Geochemistry, 94(January), 21–27. https://doi.org/10.1016/j.apgeochem.2018.05.001

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da pesquisa científica. In Metodologia da Pesquisa Científica (1st ed.). https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184. https://doi.org/10.1002/jcb.26234

Santos, E. C., Bandeira, R. M., Vega, M. L., & Arcoverde, D. (2021). Poly ( melamine-formaldehyde-silica ) Composite Hydrogel for Methylene Blue Removal. Materials Research, 24(4).

Sarkar, M., & Sarkar, S. (2017). Adsorption of Cr(VI) on Iron(III) Cellulose Nanocomposite Bead. Environmental Processes, 4(4), 851–871. https://doi.org/10.1007/s40710-017-0275-2

Schwarz, D., & Weber, J. (2015). Waterborne Colloidal Polymer/Silica Hybrid Dispersions and Their Assembly into Mesoporous Poly(melamine-formaldehyde) Xerogels. Langmuir, 31(30), 8436–8445. https://doi.org/10.1021/acs.langmuir.5b00990

Schwarz, D., & Weber, J. (2017). Synthesis of mesoporous poly(melamine-formaldehyde) particles by inverse emulsion polymerization. Journal of Colloid and Interface Science, 498, 335–342. https://doi.org/10.1016/j.jcis.2017.03.064

Shin, K. Y., Hong, J. Y., & Jang, J. (2011). Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study. Journal of Hazardous Materials, 190(1–3), 36–44. https://doi.org/10.1016/j.jhazmat.2010.12.102

Tan, M. X., Sum, Y. N., Ying, J. Y., & Zhang, Y. (2013). A mesoporous poly-melamine-formaldehyde polymer as a solid sorbent for toxic metal removal. Energy and Environmental Science, 6(11), 3254–3259. https://doi.org/10.1039/c3ee42216j

Vareda, J. P., Valente, A. J. M., & Durães, L. (2020). Silica aerogels/xerogels modified with nitrogen-containing groups for heavy metal adsorption. Molecules, 25(12), 15–19. https://doi.org/10.3390/molecules25122788

Wang, Y., Xie, Y., Zhang, Y., Tang, S., Guo, C., Wu, J., & Lau, R. (2016). Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer. Chemical Engineering Research and Design, 114, 258–267. https://doi.org/10.1016/j.cherd.2016.08.027

Yan, Z., Zheng, X., Fan, J., Zhang, Y., Wang, S., Zhang, T., Sun, Q., & Huang, Y. (2020). China national water quality criteria for the protection of freshwater life: Ammonia. Chemosphere, 251. https://doi.org/10.1016/j.chemosphere.2020.126379

Yin, R. K. (2001). Estudo de caso: planejamento e métodos (2nd ed.). Bookman.

Zhang, M., Dong, X., Li, X., Jiang, Y., Li, Y., & Liang, Y. (2020). Review of separation methods for the determination of ammonium/ammonia in natural water. Trends in Environmental Analytical Chemistry, 27. https://doi.org/10.1016/j.teac.2020.e00098

Downloads

Published

23/09/2021

How to Cite

SANTOS, E. C. dos .; MESQUITA JUNIOR, J. S. de .; SILVA, D. S. N. .; FIGUEIREDO, F. C. .; BANDEIRA, R. M. .; SANTOS JÚNIOR, J. R. dos . Melamine-formaldehyde-silica and melamine-silica-cellulose composites in removing Iron and N-ammonia from landfill leachate. Research, Society and Development, [S. l.], v. 10, n. 12, p. e347101220602, 2021. DOI: 10.33448/rsd-v10i12.20602. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20602. Acesso em: 29 feb. 2024.

Issue

Section

Exact and Earth Sciences