Compósitos de melamina-formaldeído-sílica e melamina-sílica-celulose na remoção de ferro e N-amônia do lixiviado de aterro sanitário

Autores

DOI:

https://doi.org/10.33448/rsd-v10i12.20602

Palavras-chave:

Celulose; Lixiviado de aterro; Melamina-sílica.

Resumo

Os compósitos à base de melamina-formaldeído são versáteis e podem ser aplicados no tratamento de efluentes contaminados como lixiviado de aterro que possuem alta carga poluente, por serem ricos em átomos de nitrogênio os sítios permitem a interação com moléculas, átomos ou íons de interesse. Visando compara a eficiência de dois materiais a base dos mesmos precursores, avaliou-se a eficiência de dois compósitos, melamina-sílica (PMF-Si) e melamina-sílica-celulose (Cel-M-Si) na remoção de ferro e nitrogênio amoniacal em lixiviado de aterro. A cinética de adsorção mostrou que os compósitos PMF-Si e Cel-M-Si adsorvem ferro a partir de 30 min, com uma remoção média de ~ 93,4%. Aplicação de Cel-M-Si ao lixiviado removido ca. 75,7% de ferro e 76,6% de nitrogênio amoniacal. Em contraste, observou-se que o PMF-Si apresentou uma eficiência de remoção de 70,9% para o ferro e 55,0% para o nitrogênio amoniacal. Os testes comparativos permitiram concluir que os compósitos PMF-Si e Cel-M-Si apresentam potencialidades para o tratamento de lixiviado de aterro, sendo materiais de baixo custo e de fácil síntese.

Referências

Avan, A. A., Filik, H., & Demirata, B. (2021). Solid-phase extraction of Cr(VI) with magnetic melamine–formaldehyde resins, followed by its colorimetric sensing using gold nanoparticles modified with p-amino hippuric acid. Microchemical Journal, 164(October 2020). https://doi.org/10.1016/j.microc.2021.105962

Baniasadi, H., Ajdary, R., Trifol, J., Rojas, O. J., & Seppälä, J. (2021). Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydrate Polymers, 266(April). https://doi.org/10.1016/j.carbpol.2021.118114

Bretterbauer, K., Schwarzinger, C., & Cyanuric, K. (2012). Melamine Derivatives – A Review on Synthesis and Application Dedicated to Prof . Dr . Harald Schmidt on th e occasion of his 70 th birthday. Current Organic Synthesis, 9, 342–356.

Conselho Nacional do Meio Ambiente- CONAMA. (2011). Resolução N° 430, De 13 De Maio De 2011. 8. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646

González-Cortés, J. J., Almenglo, F., Ramírez, M., & Cantero, D. (2021). Simultaneous removal of ammonium from landfill leachate and hydrogen sulfide from biogas using a novel two-stage oxic-anoxic system. Science of the Total Environment, 750, 141664. https://doi.org/10.1016/j.scitotenv.2020.141664

Hasanoĝlu, A., Romero, J., Pérez, B., & Plaza, A. (2010). Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal, 160(2), 530–537. https://doi.org/10.1016/j.cej.2010.03.064

Hijazi, O., Abdelsalam, E., Samer, M., Amer, B. M. A., Yacoub, I. H., Moselhy, M. A., Attia, Y. A., & Bernhardt, H. (2020). Environmental impacts concerning the addition of trace metals in the process of biogas production from anaerobic digestion of slurry. Journal of Cleaner Production, 243, 118593. https://doi.org/10.1016/j.jclepro.2019.118593

Kabir, A., Dunlop, M. J., Acharya, B., Bissessur, R., & Ahmed, M. (2018). Polymeric composites with embedded nanocrystalline cellulose for the removal of iron(II) from contaminated water. Polymers, 10(12), 1–16. https://doi.org/10.3390/polym10121377

Köche, J. C. (2011). Fundamentos de metodologia científica. In Editora Vozes Ltda. https://doi.org/10.1590/S1517-97022003000100005

Li, J., Li, Q., Li, L. shuang, & Xu, L. (2017). Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere. Chemical Engineering Journal, 320, 501–509. https://doi.org/10.1016/j.cej.2017.03.073

Li, M., Liu, H., Chen, T., Chen, D., Wang, C., Wei, L., & Wang, L. (2020). Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: Performance and mechanism. Science of the Total Environment, 703, 135604. https://doi.org/10.1016/j.scitotenv.2019.135604

Liu, Z., Zhou, X., & Liu, C. jun. (2019). N-doped porous carbon material prepared via direct ink writing for the removal of methylene blue. Diamond and Related Materials, 95(April), 121–126. https://doi.org/10.1016/j.diamond.2019.04.010

Melo, J. C. P., Silva Filho, E. C., Santana, S. A. A., & Airoldi, C. (2019). Maleic anhydride incorporated onto cellulose and thermodynamics of cation exchange process at the solid/liquid interface. Colloids Surfaces A Physicochem. Eng. Asp, 346, 138–145.

Merline, D. J., Vukusic, S., & Abdala, A. A. (2013). Melamine formaldehyde: Curing studies and reaction mechanism. Polymer Journal, 45(4), 413–419. https://doi.org/10.1038/pj.2012.162

Mesquita Junior, J. S. de, Figueiredo, F. C., Santos, E. C. dos, Silva, D. S. N., & Santos Júnior, J. R. dos. (2021). Cellulose (Mangifera indica) modified by melamine-silica applied in the treatment of effluents with chemically assisted precipitation. Research, Society and Development, 10(6), 1–29.

Miranda, C., Soares, A. S., Coelho, A. C., Trindade, H., & Teixeira, C. A. (2021). Environmental implications of stored cattle slurry treatment with sulphuric acid and biochar: A life cycle assessment approach. Environmental Research, 194(January). https://doi.org/10.1016/j.envres.2020.110640

Mohammed, N., Lian, H., Islam, M. S., Strong, M., Shi, Z., Berry, R. M., Yu, H. Y., & Tam, K. C. (2021). Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chemical Engineering Journal, 417(December 2020). https://doi.org/10.1016/j.cej.2021.129237

Nakanishi, Y., Hara, Y., Miyamoto, R., Nakanishi, K., & Kanamori, K. (2021). Highly porous melamine-formaldehyde monoliths with controlled hierarchical porosity toward application as a metal scavenger. Materials Advances, 2(8), 2604–2608. https://doi.org/10.1039/d1ma00034a

Oppong-Anane, A. B., Deliz Quiñones, K. Y., Harris, W., Townsend, T., & Bonzongo, J. C. J. (2018). Iron reductive dissolution in vadose zone soils: Implication for groundwater pollution in landfill impacted sites. Applied Geochemistry, 94(January), 21–27. https://doi.org/10.1016/j.apgeochem.2018.05.001

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da pesquisa científica. In Metodologia da Pesquisa Científica (1st ed.). https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184. https://doi.org/10.1002/jcb.26234

Santos, E. C., Bandeira, R. M., Vega, M. L., & Arcoverde, D. (2021). Poly ( melamine-formaldehyde-silica ) Composite Hydrogel for Methylene Blue Removal. Materials Research, 24(4).

Sarkar, M., & Sarkar, S. (2017). Adsorption of Cr(VI) on Iron(III) Cellulose Nanocomposite Bead. Environmental Processes, 4(4), 851–871. https://doi.org/10.1007/s40710-017-0275-2

Schwarz, D., & Weber, J. (2015). Waterborne Colloidal Polymer/Silica Hybrid Dispersions and Their Assembly into Mesoporous Poly(melamine-formaldehyde) Xerogels. Langmuir, 31(30), 8436–8445. https://doi.org/10.1021/acs.langmuir.5b00990

Schwarz, D., & Weber, J. (2017). Synthesis of mesoporous poly(melamine-formaldehyde) particles by inverse emulsion polymerization. Journal of Colloid and Interface Science, 498, 335–342. https://doi.org/10.1016/j.jcis.2017.03.064

Shin, K. Y., Hong, J. Y., & Jang, J. (2011). Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study. Journal of Hazardous Materials, 190(1–3), 36–44. https://doi.org/10.1016/j.jhazmat.2010.12.102

Tan, M. X., Sum, Y. N., Ying, J. Y., & Zhang, Y. (2013). A mesoporous poly-melamine-formaldehyde polymer as a solid sorbent for toxic metal removal. Energy and Environmental Science, 6(11), 3254–3259. https://doi.org/10.1039/c3ee42216j

Vareda, J. P., Valente, A. J. M., & Durães, L. (2020). Silica aerogels/xerogels modified with nitrogen-containing groups for heavy metal adsorption. Molecules, 25(12), 15–19. https://doi.org/10.3390/molecules25122788

Wang, Y., Xie, Y., Zhang, Y., Tang, S., Guo, C., Wu, J., & Lau, R. (2016). Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer. Chemical Engineering Research and Design, 114, 258–267. https://doi.org/10.1016/j.cherd.2016.08.027

Yan, Z., Zheng, X., Fan, J., Zhang, Y., Wang, S., Zhang, T., Sun, Q., & Huang, Y. (2020). China national water quality criteria for the protection of freshwater life: Ammonia. Chemosphere, 251. https://doi.org/10.1016/j.chemosphere.2020.126379

Yin, R. K. (2001). Estudo de caso: planejamento e métodos (2nd ed.). Bookman.

Zhang, M., Dong, X., Li, X., Jiang, Y., Li, Y., & Liang, Y. (2020). Review of separation methods for the determination of ammonium/ammonia in natural water. Trends in Environmental Analytical Chemistry, 27. https://doi.org/10.1016/j.teac.2020.e00098

Downloads

Publicado

23/09/2021

Como Citar

SANTOS, E. C. dos .; MESQUITA JUNIOR, J. S. de .; SILVA, D. S. N. .; FIGUEIREDO, F. C. .; BANDEIRA, R. M. .; SANTOS JÚNIOR, J. R. dos . Compósitos de melamina-formaldeído-sílica e melamina-sílica-celulose na remoção de ferro e N-amônia do lixiviado de aterro sanitário. Research, Society and Development, [S. l.], v. 10, n. 12, p. e347101220602, 2021. DOI: 10.33448/rsd-v10i12.20602. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20602. Acesso em: 27 jul. 2024.

Edição

Seção

Ciências Exatas e da Terra