Compuestos de melamina-formaldehído-sílice y melamina-sílice-celulosa para eliminar el hierro y el N-amoníaco del lixiviado de vertederos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20602

Palabras clave:

Celulosa; Lixiviados de vertedero; Melamina-sílice.

Resumen

Los compuestos a base de melamina-formaldehído son versátiles y se pueden aplicar en el tratamiento de efluentes contaminados como lixiviados de vertedero que tienen una alta carga contaminante, ya que son ricos en átomos de nitrógeno, los sitios permiten la interacción con moléculas, átomos o iones de interés. Visanto compara la eficiencia de dos materiales basados ​​en los mismos precursores, evaluando la eficiencia de dos composites, melamina-sílice (PMF-Si) y melamina-sílice-celulosa (Cel-M-Si) en la remoción de hierro y nitrógeno amoniacal en lixiviados de vertedero. . La cinética de adsorción mostró que los compuestos PMF-Si y Cel-M-Si adsorben hierro a partir de 30 minutos, con una eliminación promedio de ~ 93,4%. Aplicación de Cel-M-Si para eliminar el lixiviado aprox. 75,7% de hierro y 76,6% de nitrógeno amoniacal. Por el contrario, se observó que PMF-Si tenía una eficiencia de eliminación del 70,9% para el hierro y del 55,0% para el nitrógeno amoniacal. Las pruebas comparativas permitieron concluir que los composites PMF-Si y Cel-M-Si tienen potencial para el tratamiento de lixiviados de vertedero, siendo materiales de bajo costo y fácil síntesis.

Citas

Avan, A. A., Filik, H., & Demirata, B. (2021). Solid-phase extraction of Cr(VI) with magnetic melamine–formaldehyde resins, followed by its colorimetric sensing using gold nanoparticles modified with p-amino hippuric acid. Microchemical Journal, 164(October 2020). https://doi.org/10.1016/j.microc.2021.105962

Baniasadi, H., Ajdary, R., Trifol, J., Rojas, O. J., & Seppälä, J. (2021). Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydrate Polymers, 266(April). https://doi.org/10.1016/j.carbpol.2021.118114

Bretterbauer, K., Schwarzinger, C., & Cyanuric, K. (2012). Melamine Derivatives – A Review on Synthesis and Application Dedicated to Prof . Dr . Harald Schmidt on th e occasion of his 70 th birthday. Current Organic Synthesis, 9, 342–356.

Conselho Nacional do Meio Ambiente- CONAMA. (2011). Resolução N° 430, De 13 De Maio De 2011. 8. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646

González-Cortés, J. J., Almenglo, F., Ramírez, M., & Cantero, D. (2021). Simultaneous removal of ammonium from landfill leachate and hydrogen sulfide from biogas using a novel two-stage oxic-anoxic system. Science of the Total Environment, 750, 141664. https://doi.org/10.1016/j.scitotenv.2020.141664

Hasanoĝlu, A., Romero, J., Pérez, B., & Plaza, A. (2010). Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal, 160(2), 530–537. https://doi.org/10.1016/j.cej.2010.03.064

Hijazi, O., Abdelsalam, E., Samer, M., Amer, B. M. A., Yacoub, I. H., Moselhy, M. A., Attia, Y. A., & Bernhardt, H. (2020). Environmental impacts concerning the addition of trace metals in the process of biogas production from anaerobic digestion of slurry. Journal of Cleaner Production, 243, 118593. https://doi.org/10.1016/j.jclepro.2019.118593

Kabir, A., Dunlop, M. J., Acharya, B., Bissessur, R., & Ahmed, M. (2018). Polymeric composites with embedded nanocrystalline cellulose for the removal of iron(II) from contaminated water. Polymers, 10(12), 1–16. https://doi.org/10.3390/polym10121377

Köche, J. C. (2011). Fundamentos de metodologia científica. In Editora Vozes Ltda. https://doi.org/10.1590/S1517-97022003000100005

Li, J., Li, Q., Li, L. shuang, & Xu, L. (2017). Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere. Chemical Engineering Journal, 320, 501–509. https://doi.org/10.1016/j.cej.2017.03.073

Li, M., Liu, H., Chen, T., Chen, D., Wang, C., Wei, L., & Wang, L. (2020). Efficient U(VI) adsorption on iron/carbon composites derived from the coupling of cellulose with iron oxides: Performance and mechanism. Science of the Total Environment, 703, 135604. https://doi.org/10.1016/j.scitotenv.2019.135604

Liu, Z., Zhou, X., & Liu, C. jun. (2019). N-doped porous carbon material prepared via direct ink writing for the removal of methylene blue. Diamond and Related Materials, 95(April), 121–126. https://doi.org/10.1016/j.diamond.2019.04.010

Melo, J. C. P., Silva Filho, E. C., Santana, S. A. A., & Airoldi, C. (2019). Maleic anhydride incorporated onto cellulose and thermodynamics of cation exchange process at the solid/liquid interface. Colloids Surfaces A Physicochem. Eng. Asp, 346, 138–145.

Merline, D. J., Vukusic, S., & Abdala, A. A. (2013). Melamine formaldehyde: Curing studies and reaction mechanism. Polymer Journal, 45(4), 413–419. https://doi.org/10.1038/pj.2012.162

Mesquita Junior, J. S. de, Figueiredo, F. C., Santos, E. C. dos, Silva, D. S. N., & Santos Júnior, J. R. dos. (2021). Cellulose (Mangifera indica) modified by melamine-silica applied in the treatment of effluents with chemically assisted precipitation. Research, Society and Development, 10(6), 1–29.

Miranda, C., Soares, A. S., Coelho, A. C., Trindade, H., & Teixeira, C. A. (2021). Environmental implications of stored cattle slurry treatment with sulphuric acid and biochar: A life cycle assessment approach. Environmental Research, 194(January). https://doi.org/10.1016/j.envres.2020.110640

Mohammed, N., Lian, H., Islam, M. S., Strong, M., Shi, Z., Berry, R. M., Yu, H. Y., & Tam, K. C. (2021). Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chemical Engineering Journal, 417(December 2020). https://doi.org/10.1016/j.cej.2021.129237

Nakanishi, Y., Hara, Y., Miyamoto, R., Nakanishi, K., & Kanamori, K. (2021). Highly porous melamine-formaldehyde monoliths with controlled hierarchical porosity toward application as a metal scavenger. Materials Advances, 2(8), 2604–2608. https://doi.org/10.1039/d1ma00034a

Oppong-Anane, A. B., Deliz Quiñones, K. Y., Harris, W., Townsend, T., & Bonzongo, J. C. J. (2018). Iron reductive dissolution in vadose zone soils: Implication for groundwater pollution in landfill impacted sites. Applied Geochemistry, 94(January), 21–27. https://doi.org/10.1016/j.apgeochem.2018.05.001

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da pesquisa científica. In Metodologia da Pesquisa Científica (1st ed.). https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184. https://doi.org/10.1002/jcb.26234

Santos, E. C., Bandeira, R. M., Vega, M. L., & Arcoverde, D. (2021). Poly ( melamine-formaldehyde-silica ) Composite Hydrogel for Methylene Blue Removal. Materials Research, 24(4).

Sarkar, M., & Sarkar, S. (2017). Adsorption of Cr(VI) on Iron(III) Cellulose Nanocomposite Bead. Environmental Processes, 4(4), 851–871. https://doi.org/10.1007/s40710-017-0275-2

Schwarz, D., & Weber, J. (2015). Waterborne Colloidal Polymer/Silica Hybrid Dispersions and Their Assembly into Mesoporous Poly(melamine-formaldehyde) Xerogels. Langmuir, 31(30), 8436–8445. https://doi.org/10.1021/acs.langmuir.5b00990

Schwarz, D., & Weber, J. (2017). Synthesis of mesoporous poly(melamine-formaldehyde) particles by inverse emulsion polymerization. Journal of Colloid and Interface Science, 498, 335–342. https://doi.org/10.1016/j.jcis.2017.03.064

Shin, K. Y., Hong, J. Y., & Jang, J. (2011). Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study. Journal of Hazardous Materials, 190(1–3), 36–44. https://doi.org/10.1016/j.jhazmat.2010.12.102

Tan, M. X., Sum, Y. N., Ying, J. Y., & Zhang, Y. (2013). A mesoporous poly-melamine-formaldehyde polymer as a solid sorbent for toxic metal removal. Energy and Environmental Science, 6(11), 3254–3259. https://doi.org/10.1039/c3ee42216j

Vareda, J. P., Valente, A. J. M., & Durães, L. (2020). Silica aerogels/xerogels modified with nitrogen-containing groups for heavy metal adsorption. Molecules, 25(12), 15–19. https://doi.org/10.3390/molecules25122788

Wang, Y., Xie, Y., Zhang, Y., Tang, S., Guo, C., Wu, J., & Lau, R. (2016). Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer. Chemical Engineering Research and Design, 114, 258–267. https://doi.org/10.1016/j.cherd.2016.08.027

Yan, Z., Zheng, X., Fan, J., Zhang, Y., Wang, S., Zhang, T., Sun, Q., & Huang, Y. (2020). China national water quality criteria for the protection of freshwater life: Ammonia. Chemosphere, 251. https://doi.org/10.1016/j.chemosphere.2020.126379

Yin, R. K. (2001). Estudo de caso: planejamento e métodos (2nd ed.). Bookman.

Zhang, M., Dong, X., Li, X., Jiang, Y., Li, Y., & Liang, Y. (2020). Review of separation methods for the determination of ammonium/ammonia in natural water. Trends in Environmental Analytical Chemistry, 27. https://doi.org/10.1016/j.teac.2020.e00098

Descargas

Publicado

23/09/2021

Cómo citar

SANTOS, E. C. dos .; MESQUITA JUNIOR, J. S. de .; SILVA, D. S. N. .; FIGUEIREDO, F. C. .; BANDEIRA, R. M. .; SANTOS JÚNIOR, J. R. dos . Compuestos de melamina-formaldehído-sílice y melamina-sílice-celulosa para eliminar el hierro y el N-amoníaco del lixiviado de vertederos. Research, Society and Development, [S. l.], v. 10, n. 12, p. e347101220602, 2021. DOI: 10.33448/rsd-v10i12.20602. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20602. Acesso em: 27 jul. 2024.

Número

Sección

Ciencias Exactas y de la Tierra