Bacterial lipases: impacts on dairy product quality and biotechnological potential




Lipolytic enzymes; Psychrotrophic; Lipolysis.


Lipases are enzymes that catalyze the hydrolysis of triacylglycerols, releasing fatty acids that can be associated with the spoilage of many foods. On the other hand, lipases of microbial origin present desirable characteristics to be used in several biotechnological applications and are considered versatile biocatalysts, acting in a variety of chemical reactions. The objective of this work was to evaluate, through a literature review, the impact of bacterial lipases on the quality of dairy products and the biotechnological potential of these enzymes. Psychrotrophic bacteria isolated from refrigerated raw milk commonly secrete heat resistant lipases, a problem for the dairy industry, as they resist heat treatments used and remain in the finished dairy product. Fatty acids released during lipolysis contribute to the strong, rancid, soapy taste of dairy products, making them unacceptable to the consumer. However, when this activity is controlled, lipases act in the development of desirable sensory attributes. For example, in some cheeses that mature for a long time, lipolytic activity is essential for the development of characteristic flavors. In addition, lipases have great potential for biotechnological application, including in the degradation of polyurethanes, representing an advantage for the industry. Therefore, lipases can cause defects in dairy products, but they are also of great industrial interest when their activity is explored.


Akatsuka, H., Kawai, E., Omori, K., & Shibatani, T. (1995). The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. Journal of Bacteriology, 177(22), 6381-6389.

Andrewes, P. (2018). Indirect detection of lipase in UHT milk by measuring methyl ester formation. International Dairy Journal, 79, 1-4.

Anthonsen, H. W., Baptista, A., Drabløs, F., Martel, P., Petersen, S. B., Sebastião, M., & Vaz, L. (1995). Lipases and esterases: a review of their sequences, structure and evolution. Biotechnology Annual Review. Elsevier, 1, 315-371.

Argov-Argaman, N., Mida, K., Cohen, B. C., Visker, M., & Hettinga, K. (2013). Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane. PLoS One, 8(7), 1-8.

Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 343(1), 177-183.

Barton, M. D. Pathogens in Milk | Yersinia enterocolitica. (2011). Encyclopedia of Dairy Sciences (Second Edition), 117-123.

Bemfeito, R. M., Rodrigues, J. F., Silva, J. G., Abreu, L. R. (2016). Temporal dominance of sensations sensory profile and drivers of liking of artisanal Minas cheese produced in the region of Serra da Canastra, Brazil. Journal of Dairy Science, 99(10), 7886-7897.

Borrelli, G. M., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9), 20774–20840.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento (MAPA) (2018). Instrução Normativa 76 de novembro de 2018. Aprova os Regulamentos Técnicos que fixam a identidade e as características de qualidade que devem apresentar o leite cru refrigerado, o leite pasteurizado e o leite pasteurizado tipo A.

Brito, M. A., Brito, J. R., Arcuri, E., Lange, C., Silva, M., Souza, G. (2016). Agência de Informação Embrapa. Agronegócio do Leite. Composição.

Chen, L. D. R. M., Daniel, R. M., & Coolbear, T. (2003). Detection and impact of protease and lipase activities in milk and milk powders. International Dairy Journal, 13(4), 255-275.

Clark, S., Costello, M., Drake, M., & Bodyfelt, F. (Eds). (2009). The sensory evaluation of dairy products. Springer Science & Business Media.

Decimo, M., Morandi, S., Silvetti, T., & Brasca, M. (2014). Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. Journal of Food Science, 79(10), M2081-M2090.

Decimo, M., Cabeza, M. C., Ordóñez, J. A., De Noni, I., & Brasca, M. (2018). Volatile organic compounds associated with milk spoilage by psychrotrophic bacteria. International Journal of Dairy Technology, 71(3), 593-600.

Deeth, H. C. (2006). Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16(6), 555-562.

Deeth, H. C. (2011). Lipolysis and Hydrolytic Rancidity. In: Encyclopedia of Dairy Sciences, 2nd Ed, Oxford: Academic Press.721-726.

Deeth H.C. (2020) Stability and Spoilage of Lipids in Milk and Dairy Products. In: McSweeney P.L.H., Fox P.F., O'Mahony J.A. (eds) Advanced Dairy Chemistry, v. 2. Springer. 345-373.

Forde, A., Fitzgerald, G. F. (2000). Biotechnological approaches to the understanding and improvement of mature cheese flavour. Current Opinion in Biotechnology, 11(5), 484-489.

Franciosi, E., De Sabbata, G., Gardini, F., Cavazza, A., Poznanski, E. (2011). Changes in psychrotrophic microbial populations during milk creaming to produce Grana Trentino cheese. Food Microbiology, 28(1), 43-51.

Gan, H. H., Yan, B., Linforth, R. S. T., Fisk, I. D. (2016). Development and validation of an APCI-MS/GC-MS approach for the classification and prediction of Cheddar cheese maturity. Food Chemistry, 190, 442-447.

Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64(6), 763-781.

Hantsis-Zacharov, E., & Halpern, M. (2007). Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Applied and Environmental Microbiology, 73(22), 7162-7168.

Hari Krishna, S., & Karanth, N. G. (2002). Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catalysis Reviews - Science and Engineering, 44(4), 499–591.

Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235-251.

Hitch, T. C. A., Clavel, T. (2019). A proposed update for the classification and description of bacterial lipolytic enzymes. PeerJ, 7 e7249.

Howard, G. T., Norton, W. N., & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation, 23(4), 561-573.

Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Reviews in Microbiology, 53(1), 315-351.

Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current opinion in biotechnology, 13(4), 390-397.

Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Van Heuvel, M., & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15(1), 29-63.

Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., & Nadeem, H. (2018). Bacterial lipases: a review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23-34.

Jensen, R. G. (1974). Characteristics of the lipase from the mold, Geotrichum candidum: A review. Lipids, 9(3), 149–157.

Ji, X., Li, S., Wang, B., Zhang, Q., Lin, L., Dong, Z., Wei, Y. (2015). Expression, purification, and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica. Protein Expression and Purification, 115, 125-131.

Kapoor, M., & Gupta, M. N. (2012). Lipase promiscuity and its biochemical applications. Process Biochemistry, 47(4), 555–569.

Kim, H. K., Park, S. Y., Lee, J. K., & Oh, T. K. (1998). Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Bioscience, Biotechnology, and Biochemistry, 62(1), 66-71.

Kovacic, F., Babic, N., Krauss, U., Jaeger, K. (2019). Classification of lipolytic enzymes from bacteria. Aerobic Utilization of Hydrocarbons, Oils and Lipids, 24, 255-289.

Kumura, H., Mikawa, K., & Saito, Z. (1993). Influence of milk proteins on the thermostability of the lipase from Pseudomonas fluorescens 33. Journal of Dairy Science, 76(8), 2164-2167.

Kuncova, G., Szilva, J., Hetflejs, J., & Sabata, S. (2003). Catalysis in organic solvents with lipase immobilized by sol-gel technique. Journal of Sol-Gel Science and Technology, 26(1-3), 1183-1187.

Liu, Z., Li, C., Pryce, J., Rochfort, S. (2020). Comprehensive characterization of bovine milk lipids: triglycerides. ACS Omega, 5(21), 12573-12582.

Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., & Robert, B. (2011). Fat globules selected from whole milk according to their size: different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125(2), 355-368.

Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: role of technological processes and potential impacts. Dairy Science & Technology, 95(6), 863-893.

Muir, D. D. (1996). The shelf-life of dairy products: 1. Factors influencing raw milk and fresh products. International Journal of Dairy Technology, 49(1), 24-32.

Nagarajan, S. (2012). New tools for exploring “old friends—microbial lipases”. Applied Biochemistry and Biotechnology, 168(5), 1163-1196.

Narvhus, J. A., Bækkelund, O. D., Tidemann, E. M., Østlie, H. M., Abrahamsen, R. K. (2021). Isolates of Pseudomonas spp. From cold-stored raw milk show variation in proteolytic and lipolytic porperties. International Dairy Journal, 123(December, 2021), 105049.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R (2018). Methodology of cientific research. [e-Book]. Santa Maria: UAB / NTE / UFSM.

Ribeiro Júnior, J. C., De Oliveira, A. M., Silva, F. G., Tamanini, R., De Oliveira, A. L. M., Beloti, V. (2018) The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 101(1), 75-83.

Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., Bezerra, R. M., Santos, J. C. S., Gonçalves, L. R. B. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, 75, 99-120.

Rosenau, F., & Jaeger, K. E. (2000). Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie, 82(11), 1023-1032.

Salgado, C. A., Almeida, F. A., Barros, E., Baracat-Pereira, M. C., Baglinière, F., Vanetti, M. C. D. (2021). Identification and characterization of a polyurethanase with lipase activity from Serratia liquefaciens isolated from cold raw cow’s milk. Food Chemistry, 337, 127954.

Salgado, C. A., Baglinière, F., Vanetti, M. C. D. (2020). Spoilage potential of a het-stable lipase produced by Serratia liquefaciens isolated from cold raw milk. LWT, 126(May, 2020), 109289.

Sangeetha, R., Arulpandi, I., & Geetha, A. (2011). Bacterial lipases as potential industrial biocatalysts: An overview. Research Journal of Microbiology, 6(1), 1-24.

Shah, Z., Krumholz, L., Aktas, D. F., Hasan, F., Khattak, M., & Shah, A. A. (2013). Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation, 24(6), 865-877.

Soliman, N. A., Knoll, M., Abdel-Fattah, Y. R., Schmid, R. D., & Lange, S. (2007). Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochemistry, 42(7), 1090-1100.

Son, M., Moon, Y., Oh, M. J., Han, S. B., Park, K. H., Kim, J. G., & Ahn, J. H. (2012). Lipase and protease double deletion mutant of Pseudomonas fluorescens suitable for extracellular protein production. Applied and Environmental Microbiology, 78(23), 8454-8462.

Sørhaug, T., & Stepaniak, L. (1997). Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends in Food Science & Technology, 8(2), 35-41.

Uppada, S. R., Akula, M., Bhattacharya, A., & Dutta, J. R. (2017). Immobilized lipase from Lactobacillus plantarum in meat degradation and synthesis of flavor esters. Journal of Genetic Engineering and Biotechnology, 15(2), 331–334.

Verma, S., Meghwanshi, G. K., & Kumar, R. (2021). Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie, 182(March), 23–36.

Vithanage, N. R., Dissanayake, M., Bolge, G., Palombo, E. A., Yeager, T. R., & Datta, N. (2016). Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, 57, 80-90.

Walter, L., Shrestha, P., Fry, R., Leury, B. J., Logan, A. (2020). Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. Journal of Dairy Science, 103(2), 1920-1930.

Wiking, L. (2020). Milking and handling of raw milk | Influence on free fatty acids. Reference Module in Food Science. 2020.

Yuan, L., Sadiq, F. A., Liu, T., Flint, S., Chen, J., Yang, H., Gu, J., Zhang, G., He, G. (2017). Psychrotrophic bacterial populations in Chinese raw dairy milk. LWT, 84, 409-418.

Zhang, A., Gao, R., Diao, N., Xie, G., Gao, G., & Cao, S. (2009). Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. Journal of Molecular Catalysis B: Enzymatic, 56(2-3), 78-84.

Zhang, D., Palmer, J., Teh, K. H., Biggs, P., Flint, S. (2019). 16S rDNA high-throughput sequencing and MALDI-TOF MS are complementary When studying psychrotrophic bacterial diversity of raw cow’s milk. International Dairy Journal, 97, 86-91.



How to Cite

SANTOS, C. I. A. dos; SALGADO, C. A.; VANETTI, M. C. D. Bacterial lipases: impacts on dairy product quality and biotechnological potential. Research, Society and Development, [S. l.], v. 10, n. 13, p. e230101321213, 2021. DOI: 10.33448/rsd-v10i13.21213. Disponível em: Acesso em: 7 dec. 2021.



Agrarian and Biological Sciences