Lipasas bacterianas: impactos en la calidad de los productos lácteos y el potencial biotecnológico

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i13.21213

Palabras clave:

Enzimas lipolíticas; Psicrotróficas; Lipólisis.

Resumen

Las lipasas son enzimas que catalizan la hidrólisis de los triacilgliceroles, liberando ácidos grasos que pueden estar asociados con el deterioro de muchos alimentos. Por otro lado, las lipasas de origen microbiano presentan características deseables para ser utilizadas en varias aplicaciones biotecnológicas y se consideran biocatalizadores versátiles, actuando en una variedad de reacciones químicas. El objetivo de este trabajo fue evaluar, mediante una revisión de la literatura, el impacto de las lipasas bacterianas en la calidad de los productos lácteos y el potencial biotecnológico de estas enzimas. Las bacterias psicrotróficas aisladas de la leche cruda refrigerada comúnmente secretan lipasas resistentes al calor, un problema para la industria láctea, ya que resisten los tratamientos térmicos utilizados y permanecen en el producto lácteo terminado. Los ácidos grasos liberados durante la lipólisis contribuyen al sabor fuerte, rancio y jabonoso de los productos lácteos, lo que los hace inaceptables para el consumidor. Sin embargo, cuando se controla esta actividad, las lipasas actúan en el desarrollo de atributos sensoriales deseables. Por ejemplo, en algunos quesos que maduran mucho tiempo, la actividad lipolítica es fundamental para el desarrollo de sabores característicos. Además, las lipasas tienen un gran potencial para aplicaciones biotecnológicas, incluida la degradación de poliuretanos, lo que representa una ventaja para la industria. Por tanto, las lipasas pueden provocar defectos en los productos lácteos, pero también son de gran interés industrial cuando se explora su actividad.

Citas

Akatsuka, H., Kawai, E., Omori, K., & Shibatani, T. (1995). The three genes lipB, lipC, and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide. Journal of Bacteriology, 177(22), 6381-6389.

Andrewes, P. (2018). Indirect detection of lipase in UHT milk by measuring methyl ester formation. International Dairy Journal, 79, 1-4.

Anthonsen, H. W., Baptista, A., Drabløs, F., Martel, P., Petersen, S. B., Sebastião, M., & Vaz, L. (1995). Lipases and esterases: a review of their sequences, structure and evolution. Biotechnology Annual Review. Elsevier, 1, 315-371.

Argov-Argaman, N., Mida, K., Cohen, B. C., Visker, M., & Hettinga, K. (2013). Milk fat content and DGAT1 genotype determine lipid composition of the milk fat globule membrane. PLoS One, 8(7), 1-8.

Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 343(1), 177-183.

Barton, M. D. Pathogens in Milk | Yersinia enterocolitica. (2011). Encyclopedia of Dairy Sciences (Second Edition), 117-123.

Bemfeito, R. M., Rodrigues, J. F., Silva, J. G., Abreu, L. R. (2016). Temporal dominance of sensations sensory profile and drivers of liking of artisanal Minas cheese produced in the region of Serra da Canastra, Brazil. Journal of Dairy Science, 99(10), 7886-7897.

Borrelli, G. M., & Trono, D. (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences, 16(9), 20774–20840.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento (MAPA) (2018). Instrução Normativa 76 de novembro de 2018. Aprova os Regulamentos Técnicos que fixam a identidade e as características de qualidade que devem apresentar o leite cru refrigerado, o leite pasteurizado e o leite pasteurizado tipo A. http://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/52750137/do1-2018-11-30-instrucao-normativa-n-76-de-26-de-novembro-de-2018-52749894IN%2076

Brito, M. A., Brito, J. R., Arcuri, E., Lange, C., Silva, M., Souza, G. (2016). Agência de Informação Embrapa. Agronegócio do Leite. Composição. https://www.agencia.cnptia.embrapa.br/Agencia8/AG01/arvore/AG01_128_21720039243.html

Chen, L. D. R. M., Daniel, R. M., & Coolbear, T. (2003). Detection and impact of protease and lipase activities in milk and milk powders. International Dairy Journal, 13(4), 255-275.

Clark, S., Costello, M., Drake, M., & Bodyfelt, F. (Eds). (2009). The sensory evaluation of dairy products. Springer Science & Business Media.

Decimo, M., Morandi, S., Silvetti, T., & Brasca, M. (2014). Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. Journal of Food Science, 79(10), M2081-M2090.

Decimo, M., Cabeza, M. C., Ordóñez, J. A., De Noni, I., & Brasca, M. (2018). Volatile organic compounds associated with milk spoilage by psychrotrophic bacteria. International Journal of Dairy Technology, 71(3), 593-600.

Deeth, H. C. (2006). Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16(6), 555-562.

Deeth, H. C. (2011). Lipolysis and Hydrolytic Rancidity. In: Encyclopedia of Dairy Sciences, 2nd Ed, Oxford: Academic Press.721-726.

Deeth H.C. (2020) Stability and Spoilage of Lipids in Milk and Dairy Products. In: McSweeney P.L.H., Fox P.F., O'Mahony J.A. (eds) Advanced Dairy Chemistry, v. 2. Springer. 345-373.

Forde, A., Fitzgerald, G. F. (2000). Biotechnological approaches to the understanding and improvement of mature cheese flavour. Current Opinion in Biotechnology, 11(5), 484-489.

Franciosi, E., De Sabbata, G., Gardini, F., Cavazza, A., Poznanski, E. (2011). Changes in psychrotrophic microbial populations during milk creaming to produce Grana Trentino cheese. Food Microbiology, 28(1), 43-51.

Gan, H. H., Yan, B., Linforth, R. S. T., Fisk, I. D. (2016). Development and validation of an APCI-MS/GC-MS approach for the classification and prediction of Cheddar cheese maturity. Food Chemistry, 190, 442-447.

Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64(6), 763-781.

Hantsis-Zacharov, E., & Halpern, M. (2007). Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Applied and Environmental Microbiology, 73(22), 7162-7168.

Hari Krishna, S., & Karanth, N. G. (2002). Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catalysis Reviews - Science and Engineering, 44(4), 499–591.

Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39(2), 235-251.

Hitch, T. C. A., Clavel, T. (2019). A proposed update for the classification and description of bacterial lipolytic enzymes. PeerJ, 7 e7249.

Howard, G. T., Norton, W. N., & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation, 23(4), 561-573.

Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Reviews in Microbiology, 53(1), 315-351.

Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current opinion in biotechnology, 13(4), 390-397.

Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Van Heuvel, M., & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15(1), 29-63.

Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., & Nadeem, H. (2018). Bacterial lipases: a review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23-34.

Jensen, R. G. (1974). Characteristics of the lipase from the mold, Geotrichum candidum: A review. Lipids, 9(3), 149–157.

Ji, X., Li, S., Wang, B., Zhang, Q., Lin, L., Dong, Z., Wei, Y. (2015). Expression, purification, and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica. Protein Expression and Purification, 115, 125-131.

Kapoor, M., & Gupta, M. N. (2012). Lipase promiscuity and its biochemical applications. Process Biochemistry, 47(4), 555–569.

Kim, H. K., Park, S. Y., Lee, J. K., & Oh, T. K. (1998). Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Bioscience, Biotechnology, and Biochemistry, 62(1), 66-71.

Kovacic, F., Babic, N., Krauss, U., Jaeger, K. (2019). Classification of lipolytic enzymes from bacteria. Aerobic Utilization of Hydrocarbons, Oils and Lipids, 24, 255-289.

Kumura, H., Mikawa, K., & Saito, Z. (1993). Influence of milk proteins on the thermostability of the lipase from Pseudomonas fluorescens 33. Journal of Dairy Science, 76(8), 2164-2167.

Kuncova, G., Szilva, J., Hetflejs, J., & Sabata, S. (2003). Catalysis in organic solvents with lipase immobilized by sol-gel technique. Journal of Sol-Gel Science and Technology, 26(1-3), 1183-1187.

Liu, Z., Li, C., Pryce, J., Rochfort, S. (2020). Comprehensive characterization of bovine milk lipids: triglycerides. ACS Omega, 5(21), 12573-12582.

Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., & Robert, B. (2011). Fat globules selected from whole milk according to their size: different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125(2), 355-368.

Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: role of technological processes and potential impacts. Dairy Science & Technology, 95(6), 863-893.

Muir, D. D. (1996). The shelf-life of dairy products: 1. Factors influencing raw milk and fresh products. International Journal of Dairy Technology, 49(1), 24-32.

Nagarajan, S. (2012). New tools for exploring “old friends—microbial lipases”. Applied Biochemistry and Biotechnology, 168(5), 1163-1196.

Narvhus, J. A., Bækkelund, O. D., Tidemann, E. M., Østlie, H. M., Abrahamsen, R. K. (2021). Isolates of Pseudomonas spp. From cold-stored raw milk show variation in proteolytic and lipolytic porperties. International Dairy Journal, 123(December, 2021), 105049.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R (2018). Methodology of cientific research. [e-Book]. Santa Maria: UAB / NTE / UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Ribeiro Júnior, J. C., De Oliveira, A. M., Silva, F. G., Tamanini, R., De Oliveira, A. L. M., Beloti, V. (2018) The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 101(1), 75-83.

Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., Bezerra, R. M., Santos, J. C. S., Gonçalves, L. R. B. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochemistry, 75, 99-120.

Rosenau, F., & Jaeger, K. E. (2000). Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie, 82(11), 1023-1032.

Salgado, C. A., Almeida, F. A., Barros, E., Baracat-Pereira, M. C., Baglinière, F., Vanetti, M. C. D. (2021). Identification and characterization of a polyurethanase with lipase activity from Serratia liquefaciens isolated from cold raw cow’s milk. Food Chemistry, 337, 127954.

Salgado, C. A., Baglinière, F., Vanetti, M. C. D. (2020). Spoilage potential of a het-stable lipase produced by Serratia liquefaciens isolated from cold raw milk. LWT, 126(May, 2020), 109289.

Sangeetha, R., Arulpandi, I., & Geetha, A. (2011). Bacterial lipases as potential industrial biocatalysts: An overview. Research Journal of Microbiology, 6(1), 1-24.

Shah, Z., Krumholz, L., Aktas, D. F., Hasan, F., Khattak, M., & Shah, A. A. (2013). Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation, 24(6), 865-877.

Soliman, N. A., Knoll, M., Abdel-Fattah, Y. R., Schmid, R. D., & Lange, S. (2007). Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochemistry, 42(7), 1090-1100.

Son, M., Moon, Y., Oh, M. J., Han, S. B., Park, K. H., Kim, J. G., & Ahn, J. H. (2012). Lipase and protease double deletion mutant of Pseudomonas fluorescens suitable for extracellular protein production. Applied and Environmental Microbiology, 78(23), 8454-8462.

Sørhaug, T., & Stepaniak, L. (1997). Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends in Food Science & Technology, 8(2), 35-41.

Uppada, S. R., Akula, M., Bhattacharya, A., & Dutta, J. R. (2017). Immobilized lipase from Lactobacillus plantarum in meat degradation and synthesis of flavor esters. Journal of Genetic Engineering and Biotechnology, 15(2), 331–334.

Verma, S., Meghwanshi, G. K., & Kumar, R. (2021). Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie, 182(March), 23–36.

Vithanage, N. R., Dissanayake, M., Bolge, G., Palombo, E. A., Yeager, T. R., & Datta, N. (2016). Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. International Dairy Journal, 57, 80-90.

Walter, L., Shrestha, P., Fry, R., Leury, B. J., Logan, A. (2020). Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. Journal of Dairy Science, 103(2), 1920-1930.

Wiking, L. (2020). Milking and handling of raw milk | Influence on free fatty acids. Reference Module in Food Science. 2020.

Yuan, L., Sadiq, F. A., Liu, T., Flint, S., Chen, J., Yang, H., Gu, J., Zhang, G., He, G. (2017). Psychrotrophic bacterial populations in Chinese raw dairy milk. LWT, 84, 409-418.

Zhang, A., Gao, R., Diao, N., Xie, G., Gao, G., & Cao, S. (2009). Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. Journal of Molecular Catalysis B: Enzymatic, 56(2-3), 78-84.

Zhang, D., Palmer, J., Teh, K. H., Biggs, P., Flint, S. (2019). 16S rDNA high-throughput sequencing and MALDI-TOF MS are complementary When studying psychrotrophic bacterial diversity of raw cow’s milk. International Dairy Journal, 97, 86-91.

Publicado

10/10/2021

Cómo citar

SANTOS, C. I. A. dos; SALGADO, C. A.; VANETTI, M. C. D. Lipasas bacterianas: impactos en la calidad de los productos lácteos y el potencial biotecnológico. Research, Society and Development, [S. l.], v. 10, n. 13, p. e230101321213, 2021. DOI: 10.33448/rsd-v10i13.21213. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21213. Acesso em: 7 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas