Biotechnology: identification and evaluation of the Bacillus cereus amylolytic activity

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21301

Keywords:

Amylase; Bacillus; Bioprocess; Biotechnology; Enzymes.

Abstract

Biotechnology is the branch of science that uses molecules, viruses, microorganisms, cells, animals, plants or part of them in technological processes to generate benefits for humans, to flora, fauna and the environment. In this context, enzymes are natural biocatalysts that present substrate specificity and extreme importance to vital processes, as they develop indispensable functions in biochemical reactions of cell metabolism, and can be used in biotechnological processes. Knowing the human needs, for a world population of about 7.7 billion people and the functional usefulness of enzymes, there is, on the one hand, a gigantic demand for the consumption of various products in the agricultural sector, processed and industrialized, such as: food, beverages, clothing in the textile sector, medicines, vaccines, cosmetics in the chemical-pharmaceutical sector, as well as in the production of paper and fuels, in which enzymes, mainly amylases, have been widely used in production processes. In this work, experiments were carried out with the wild Bacillus cereus bacterium to verify the production of amylases, the results obtained could demonstrate the formation of amylolysis halos around the colonies in Petri dishes containing Tryptic Soy Agar + starch (1%) medium, pH 7.3 and grown in a biological oven at 37oC for 24 hours, when revealed in iodine vapor; the Amylolysis Index (AI) was 3.3 and the efficiency of starch substrate degradation by amylases was greater than 90% in the evaluated treatments.

Author Biographies

Jefferson Alves da Costa Junior, Universidade Federal de Santa Maria

Prof. Dr. Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil

Genesio Mario da Rosa, Universidade Federal de Santa Maria

Prof. Dr. Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil

Arci Dirceu Wastowski , Universidade Federal de Santa Maria

Prof. Dr. Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil.

Hilda Hildebrand Soriani, Universidade Federal de Santa Maria

Prof. Dr. Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil.

Ana Paula Corteze Locatelli, Universidade Federal de Santa Maria

MsC-academic/Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil

Darlan Weber da Silva, Universidade Federal de Santa Maria

MsC-Academic/Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil

Deisy Brasil Gonçalves, Universidade Federal de Santa Maria

MsC- academic/Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil

Gabriel Baraldi Volpi , Universidade Federal de Santa Maria

MsC-academic/Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil. 

Isabela Schamann Konzen , Universidade Federal de Santa Maria

Sci. Init. Academic - Curso de Engenharia Ambiental e Sanitária, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil.

Kauane Andressa Flach , Universidade Federal de Santa Maria

MsC- academic/Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil.

Ubiratan Alegransi Bones , Universidade Federal de Santa Maria

MsC-academic/Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade Federal de Santa Maria, Campus de Frederico Westphalen - RS, Brasil.

References

Abreu, J. A. S., Rovida, A. F. D. S., & Pamphile, J. A. (2015). Fungos de interesse: aplicações biotecnológicas. Revista UNINGÁ Review, 21(1).

Abriouel, H., Franz, C. M., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS microbiology reviews, 35(1), 201-232.

Ashwini, K., Gaurav, K., Karthik, L., & Bhaskara Rao, K. V. (2011). Optimization, production and partial purification of extracellular α-amylase from Bacillus sp. marini. Arch Appl Sci Res, 3(1), 33-42.

Astolfi Filho, S., Galembeck, E. V., Faria, J. B., & Frascino, A. C. S. (1986). Stable Yeast Transformants that Secrete Functional α–Amylase Encoded by Cloned Mouse Pancreatic cDNA. Biotechnology, 4(4), 311-315.

Beattie, A. J., Hay, M., Magnusson, B., de Nys, R., Smeathers, J., & Vincent, J. F. (2011). Ecology and bioprospecting. Austral ecology, 36(3), 341-356.

Begley, M., Hill, C., & Gahan, C. G. (2006). Bile salt hydrolase activity in probiotics. Applied and environmental microbiology, 72(3), 1729-1738.

Brazil. Ministério da Saúde. Organização Pan-Americana da Saúde. Ministério da Ciência e Tecnologia. Caracterização do Estado da Arte em Biotecnologia Marinha no Brasil. Brasília: Ministério da Saúde, 2010. http://bvsms.saude.gov.br/bvs/publicacoes/caracterizacao_estado_arte_ biotecnologia_marinha.pdf>

Brazil. Ministério da Indústria, Comércio Exterior e Serviços. 2018. http://www.mdic.gov.br/ comercioexterior/estatisticasdecomercio exterior/ comex-vis/ frame-ppi?ppi=3161

Brasília. Ministério da Saúde. Técnica de Coloração de Gram. Ministério da Saúde, Programa Nacional de Doenças Sexualmente Transmissíveis e AIDS, 2001 https://bvsms.saude.gov.br/bvs/publicacoes/115_03gram.pdf

Caraway, W. T. (1959). A stable starch substrate for the determination of amylase in serum and other body fluids. American Journal of Clinical Pathology, 32, 97-99.

Carrı́n, M. E., Ceci, L. N., & Lozano, J. E. (2004). Characterization of starch in apple juice and its degradation by amylases. Food Chemistry, 87(2), 173-178.

Chi, Z., Chi, Z., Liu, G., Wang, F., Ju, L., & Zhang, T. (2009). Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnology advances, 27(4), 423-431.

Couto, S. R., & Sanromán, M. A. (2006). Application of solid-state fermentation to food industry- a review. Journal of Food Engineering, 76(3), 291-302.

Dalvi, P., & Anthappan, P. (2007). Amylase and pectinase from single source for simultaneous desizing and scouring.

Demirkan, E. S., Mikami, B., Adachi, M., Higasa, T., & Utsumi, S. (2005). α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochemistry, 40(8), 2629-2636.

FAO/WHO. (2001). Health and nutritional properties of probiotics in food including powder milk live lactic acid bacteria. Joint Food and Agricultural Organization of the United Nations and World Health Organization Expert Consultation Report, Cordoba, Argentina. http://www.who.int/foodsafety/publications/fs_management /probiotics/en/index.html.

Gopinath, S. C., Anbu, P., Arshad, M. M., Lakshmipriya, T., Voon, C. H., Hashim, U., & Chinni, S. V. (2017). Biotechnological processes in microbial amylase production. BioMed research international, 2017.

Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process biochemistry, 38(11), 1599-1616.

Hankin, L., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3), 597-607.

Hmidet, N., Ali, N. E. H., Haddar, A., Kanoun, S., Alya, S. K., & Nasri, M. (2009). Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal, 47(1-3), 71-79.

Hong, H. A., Duc, L. H., & Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS microbiology reviews, 29(4), 813-835.

Ibrahim, S. A., & O'Sullivan, D. J. (2000). Use of chemical mutagenesis for the isolation of food grade β-galactosidase overproducing mutants of Bifidobacteria, Lactobacilli and Streptococcus thermophilus. Journal of dairy science, 83(5), 923-930.

Ishibashi, N., & Yamazaki, S. (2001). Probiotics and safety. The American journal of clinical nutrition, 73(2), 465s-470s.

Kumar, S., & Khare, S. K. (2015). Chloride activated halophilic α-amylase from Marinobacter sp. EMB8: Production optimization and nanoimmobilization for efficient starch hydrolysis. Enzyme research, 2015.

Kumar, S., & Stecher, G. Tamura. K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol, 33(7), 1870-1874.

Lin, L. L., Chyau, C. C., & Hsu, W. H. (1998). Production and properties of a raw‐starch‐degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS‐23. Biotechnology and applied biochemistry, 28(1), 61-68.

Logan, N. A., & De Vos, P. (2009). Genus Bacillus Cohn 1872. In: De Vos, P., et al., Eds., Bergey’s Manual of Systematic Bacteriology, 3, 21-128.

Malkov, S. V., Markelov, V. V., Polozov, G. Y., Sobchuk, L. I., Zakharova, N. G., Barabanschikov, B. I., & Trushin, M. V. (2005). Antitumor features of Bacillus oligonitrophilus KU-1 strain. Journal of Microbiology, Immunology and Infection, 38(2), 96-104.

Mattila-Sandholm, T., Myllärinen, P., Crittenden, R., Mogensen, G., Fondén, R., & Saarela, M. (2002). Technological challenges for future probiotic foods. International Dairy Journal, 12(2-3), 173-182.

Milner, J. A., Martin, D. J., & Smith, A. (1996). Oxygen transfer conditions in the production of alpha-amylase by Bacillus amyloliquefaciens. Enzyme and microbial technology, 18(7), 507-512.

Morita, T., & Assumpção, R. (2007). Manual de soluções, reagentes e solventes: padronização, preparação, purificação, indicadores de segurança e descarte de produtos químicos. Editora Blucher.

Morcel, C., & Biedermann, K. (1994). Coupling of fermentation and microfiltration for α-amylase production from Bacillus amyloliquefaciens. FEMS microbiology reviews, 14(1), 57-61.

Nedelcheva, P., Denkova, Z., Denev, P., Slavchev, A., & Krastanov, A. (2010). Probiotic strain Lactobacillus plantarum NBIMCC 2415 with antioxidant activity as a starter culture in the production of dried fermented meat products. Biotechnology & Biotechnological Equipment, 24(1), 1624-1630.

Nielsen, J. E., & Borchert, T. V. (2000). Protein engineering of bacterial α-amylases. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543(2), 253-274.

Nithya, V., & Halami, P. M. (2013). Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Annals of Microbiology, 63(1), 129-137.

Oliveira, C., Muller, F., & SEgato, M. (2004). Departamento de Engenharia Química e de Alimentos. Aplicações de enzimas em produtos de limpeza. Trabalhos de graduação do grupo de processos biotecnológicos da UFSC. Florianópolis: Universidade Federal de Santa Catarina.

Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource technology, 74(1), 69-80.

Pandey, A. (2003). Solid-state fermentation. Biochemical engineering journal, 13(2-3), 81-84.

Pandey, A., Webb, C., Soccol, C. R., & Larroche, C. (Eds.). (2006). Enzyme technology. Springer Science & Business Media.

Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. Journal of applied microbiology, 100(6), 1171-1185.

Peixoto, S. C., Jorge, J. A., Terenzi, H. F., & Maria de Lourdes, T. M. (2003). Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. International Microbiology, 6(4), 269-273.

Politzer, K., & Bon, E. D. S. (2006). Enzimas industriais e especiais. Centro de Gestão e Estudos Estratégicos, Ciência, Tecnologia e Inovação, IQ/UFRJ, Rio de janeiro.

Priest, F. G. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriological reviews, 41(3), 711-753.

Rajkowski, K. T., & Bennett, R. W. (2003). Bacillus cereus. In International handbook of foodborne pathogens (pp. 47-60). CRC Press.

Rhodes, J. C. (2006). Aspergillus fumigatus: growth and virulence. Medical mycology, 44(Supplement_1), S77-S81.

Sajedi, R. H., Naderi-Manesh, H., Khajeh, K., Ahmadvand, R., Ranjbar, B., Asoodeh, A., & Moradian, F. (2005). A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme and Microbial Technology, 36(5-6), 666-671.

Sarikaya, E., Higasa, T., Adachi, M., & Mikami, B. (2000). Comparison of degradation abilities of α-and β-amylases on raw starch granules. Process Biochemistry, 35(7), 711-715.

Yoon, S., Ryu, S. I., Lee, S. B., & Moon, T. W. (2008). Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus. Journal of microbiology and biotechnology, 18(3), 457-464.

Shimada, H., Honjo, M., Mita, I., Nakayama, A., Akaoka, A., Manabe, K., & Furutani, Y. (1985). The nucleotide sequence and some properties of the neutral protease gene of Bacillus amyloliquefaciens. Journal of biotechnology, 2(2), 75-85.

Sidhu, G. S., Sharma, P., Chakrabarti, T., & Gupta, J. K. (1997). Strain improvement for the production of a thermostable α-amylase. Enzyme and Microbial Technology, 21(7), 525-530.

Singh, J. S., Pandey, V. C., & Singh, D. P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, ecosystems & environment, 140(3-4), 339-353.

Swetha, S., Dhanya, G., Kesavan, M. N., Carlos, R. S., & Ashok, P. (2006). α-Amylases from Microbial Sources–An Overview on Recent Developments. Food Technol Biotechnol, 44(2), 173-184.

Soccol, C. R., Rojan, P. J., Patel, A. K., Woiciechowski, A. L., Vandenberghe, L. P., & Pandey, A. (2006). Glucoamylase. In Enzyme technology (pp. 221-237). Springer, New York, NY.

Souza, P. M. D., & Magalhães, P. D. O. (2010). Application of microbial α-amylase in industry-A review. Brazilian journal of microbiology, 41, 850-861.

Sundarram, A., & Murthy, T. P. K. (2014). α-amylase production and applications: a review. Journal of Applied & Environmental Microbiology, 2(4), 166-175.

Surmely, R., Alvarez, H., Cereda, M. P., & Vilpoux, O. F. (2003). Hidrólise do amido. Culturas de tuberosas amiláceas latino americanas, 3, 377-395.

Van Der Maarel, M. J., Van der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of biotechnology, 94(2), 137-155.

Vasiljevic, T., & Shah, N. P. (2008). Probiotics - from Metchnikoff to bioactives. International Dairy Journal, 18(7), 714-728.

Vehmaanperä, J., Steinborn, G., & Hofemeister, J. (1991). Genetic manipulation of Bacillus amyloliquefaciens. Journal of biotechnology, 19(2-3), 221-240.

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2), 697-703.

Welker, N. E., & Campbell, L. L. (1965). Induction and properties of a temperate bacteriophage from Bacillus stearothermophilus. Journal of bacteriology, 89(1), 175-184.

Wohlgemuth, R. (2010). Biocatalysis - key to sustainable industrial chemistry. Current opinion in biotechnology, 21(6), 713-724.

Downloads

Published

18/10/2021

How to Cite

COSTA JUNIOR, J. A. da .; ROSA, G. M. da; WASTOWSKI , A. D.; SORIANI, H. H. .; LOCATELLI, A. P. C. .; SILVA, D. W. da; GONÇALVES, D. B. .; VOLPI , G. B. .; KONZEN , I. S. .; FLACH , K. A. .; BONES , U. A. . Biotechnology: identification and evaluation of the Bacillus cereus amylolytic activity . Research, Society and Development, [S. l.], v. 10, n. 13, p. e437101321301, 2021. DOI: 10.33448/rsd-v10i13.21301. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21301. Acesso em: 3 jan. 2025.

Issue

Section

Agrarian and Biological Sciences