Detection of cartel evidence: a case study for Belém/PA and Santarém/PA using volatility models

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21397

Keywords:

Cartel; Volatility models; Fuels.

Abstract

The aim of this paper is to detect evidence of cartel in the application of volatility models in price data of gas dealers in the municipalities of Belém/PA and Santarém/PA. Cartels are coordinated actions between firms in which there are tacit or explicit agreements aimed at price coordination, quantities offered and/or market slices, to maximize profit jointly. For the detection of cartels, arch, GARCH, EGARCH and TGARCH volatility models will be applied. The data used are the average weekly gasoline prices extracted from the official portal of the National Agency for Petroleum, Natural Gas and Biofuels (ANP), in the period from 2004 to 2020. The results of the equation for mean showed no indications of cartel, while the ARCH model for variance detected only in Belém. There were no indications of the presence of asymmetric shocks in the Belém series, with only the occurrence in Santarém. It is concluded that the methodology is useful for the detection of cartels of gasoline dealers.

Author Biographies

Estevão Miguel Cardoso da Silva, Universidade Federal do Oeste do Pará

Graduando em Ciências Econômicas na Universidade Federal do Oeste do Pará - UFOPA.

Brena do Nascimento Carvalho, Universidade do Estado do Amazonas

Professora voluntária na Universidade do Estado do Amazonas - UEA. Possui Graduação em Ciências Econômicas pela Universidade Federal do Oeste do Pará - UFOPA, Mestrado em Economia Aplicada pela Universidade Federal de São Carlos - UFSCar e Mestrando em Matemática pela Universidade Federal do Amazonas - UFAM.

Zilda Joaquina Cohen Gama dos Santos, Universidade Federal do Oeste do Pará

Professora Adjunta III no Instituto de Ciências da Sociedade da Universidade Federal do Oeste do Pará. Possui doutorado em Desenvolvimento Rural pela Universidade Federal do Rio Grande do Sul (UFRGS) (2019), Mestrado em Economia pela Universidade da Amazônia (2006), Graduação em Ciências Econômicas pela Universidade da Amazônia (2003) e Graduação em Licenciatura Plena em Matemática pela Universidade Federal do Pará (2002).

Tarcísio da Costa Lobato, Universidade Federal do Oeste do Pará

Docente da Universidade Federal do Oeste do Pará - UFOPA. Possui Graduação em Matemática pela Universidade do Estado do Pará - UEPA, Graduação e Mestrado em Estatítica pela Universidade Federal do Pará - UFPA e Doutorado em Economia Aplicada pela Universidade de São Paulo - ESALQ/USP.

References

Abrantes-Metz, R. M., Froeb, L. M., Geweke, J., & Taylor, C. T. (2006). A variance screen for collusion. International Journal of Industrial Organization, 24(3), 467-486.

Abrantes-Metz, R., & Bajari, P. (2009). Screen for conspiracies and their multiple applications. Antitrust, 24, 66.

ANP - AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2020. Rio de Janeiro, 2020. http://www.anp.gov.br/publicacoes/anuario-estatistico/5809-anuario-estatistico-2020. Acesso em: 01 dez. 2020.

Bolotova, Y., Connor, J. M., & Miller, D. J. (2008). The impact of collusion on price behavior: Empirical results from two recent cases. International Journal of Industrial Organization, 26(6), 1290-1307.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.

Bueno, R. L. (2008). Econometria de séries temporais. Cengage Learning.

Buccirossi, P. (2006). Does parallel behavior provide some evidence of collusion?. Review of Law & Economics, 2(1), 85-102.

BRASIL. Lei nº 8.137, de 27 de dezembro de 1990. Define crimes contra a ordem tributária, econômica e contra as relações de consumo, e dá outras providências. Brasília, DF: Presidência da República, 1990. http://www.planalto.gov.br/ccivil_03/LEIS/L8137.htm. Acesso em: 12 dez. 2020.

Carrijo, G. D. (2019). Análise estatística dos preços de combustíveis para auxílio na detecção de cartéis no setor de distribuição. http://repositorio.enap.gov.br/handle/1/4111.

CONSELHO ADMINISTRATIVO DE DEFESA ECONÔMICA. (2009). Coleção SDE/CADE nº 01/2009: Combate a cartéis e programa de leniência. Diário Oficial da União, Brasília, DF, 3ª edição, 36 páginas, 2009. http://www.cade.gov.br/acesso-a-informacao/publicacoes-institucionais/documentos-da-antiga-lei/cartilha_leniencia.pdf.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.

Enders, W. (2008). Applied econometric time series. John Wiley & Sons.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, 987-1007.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance, 48(5), 1779-1801.

Greene, W. H. (2000). Econometric analysis. 4th edition. International edition, New Jersey: Prentice Hall, 201-215.

Grout, P. A., & Sonderegger, S. M. I. A. (2007). Structural approaches to cartel detection. In European Competition Law Annual: 2006. Enforcement of Prohibition of Cartels (pp. 83-103). Hart Publishing.

Harrington, J. E. (2005). Detecting cartels. N. 526. working paper.

Harrington, J., 2006. Behavioral screening and the detection of cartels. In: ClausDieter, E., Atanasiu, I. (Eds.), European Competition Law Annual 2006: Enforcement of Prohibition of Cartels. Hart Publishing, Oxford, UK.

Harrington, J. E. (2012). A theory of tacit collusion N. 588. Working Paper.

Harrington Jr, J. E. (2021). The Practical Requirements of a Successful Cartel. Available at SSRN 3798852.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Frota de veículos, 2021. https://cidades.ibge.gov.br/brasil/pa/pesquisa/22/28120.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?.Journal of econometrics, 54(1-3), 159-178.

Marques, M. I. G. (2017). Aplicação dos modelos GARCH, EGARCH e TGARCH no DAX-30. Dissertação de Mestrado, Instituto Politécnico de Lisboa, Portugal. http://hdl.handle.net/10400.21/7211

Morettin, P. A. (2017). Econometria financeira: um curso em séries temporais financeiras. Editora Blucher.

Pedra, D. P., de Oliveira Bicalho, L. M. N., de Araújo Vilela, O., Baran, P. H., de Paiva, R. M., & de Melo, T. P. (2010). Metodologia adotada pela agência nacional do petróleo, gás natural e biocombustíveis para a detecção de cartéis. ANP, Rio de Janeiro.

Ragazzo, C. E. J., & Silva, R. D. (2006). Aspectos econômicos e jurídicos sobre cartéis na revenda de combustíveis: uma agenda para investigações. SEAE/MF Documento de trabalho, 40.

Robinson, J. (1969). The economics of imperfect competition. Springer.

Silva, A. S. (2016). Filtros de cartéis baseados em dinâmicas de preços: uma aplicação ao varejo de combustíveis do Brasil. 224 folhas. Tese (Doutorado) - UFJF, Programa de Pós-graduação em Economia, Juiz de Fora, Brasil.

Salvini, R. R., Burnquist, H. L., & Jacomini, R. L. (2017). Investigando a assimetria na transmissão dos preços dos combustíveis no Estado de São Paulo. Anais do Seminário Científico do UNIFACIG, (2).

Silveira, D., Vasconcelos, S., Bogossian, P., & Neto, J. (2021). Cartel screening in the Brazilian fuel retail market. EconomiA, 22(1), 53-70.

Vasconcelos, S. P., & Vasconcelos, C. F. (2008). Análise do comportamento estratégico em preços no mercado de gasolina brasileiro: modelando volatilidade. Análise Econômica, 26(50).

Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18(5), 931-955.

Published

12/10/2021

How to Cite

SILVA, E. M. C. da; CARVALHO, B. do N.; SANTOS, Z. J. C. G. dos; LOBATO, T. da C. Detection of cartel evidence: a case study for Belém/PA and Santarém/PA using volatility models. Research, Society and Development, [S. l.], v. 10, n. 13, p. e279101321397, 2021. DOI: 10.33448/rsd-v10i13.21397. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21397. Acesso em: 3 jan. 2025.

Issue

Section

Human and Social Sciences