Detección de pruebas de cárteles: un estudio de caso para Belém/PA y Santarém/PA utilizando modelos de volatilidad
DOI:
https://doi.org/10.33448/rsd-v10i13.21397Palabras clave:
Cartel; Modelos de volatilidad; Combustibles.Resumen
El objetivo de este artículo es detectar evidencias de cártel en la aplicación de modelos de volatilidad en los datos de precios de las estaciones de los distribuidores de gasoline municipios de Belém/PA y Santarém/PA. Los cárteles son acciones coordinadas entre empresas en las que existen acuerdos tácitos o explícitos destinados a la coordinación de precios, cantidades ofrecidas y/o rebanadas de mercado, para maximizar las ganancias juntos. Para la detección de cárteles se aplicarán los modelos de volatilidad arch, GARCH, EGARCH y TGARCH. Los datos utilizados son los precios promedio semanales de la gasolina extraídos del portal oficial de la Agencia Nacional del Petróleo, Gas Natural y Biocombustibles (ANP), de 2004 a 2020. Los resultados de la ecuación para la media no mostraron indicios de cártel, mientras que el modelo ARCH para la varianza se detectó solo en Belém. No hubo indicios de la presencia de choques asimétricos en la serie de Belém, con sólo la ocurrencia en Santarém. Se concluye que la metodología es útil para la detección de cárteles de distribuidores de gasolina.
Citas
Abrantes-Metz, R. M., Froeb, L. M., Geweke, J., & Taylor, C. T. (2006). A variance screen for collusion. International Journal of Industrial Organization, 24(3), 467-486.
Abrantes-Metz, R., & Bajari, P. (2009). Screen for conspiracies and their multiple applications. Antitrust, 24, 66.
ANP - AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2020. Rio de Janeiro, 2020. http://www.anp.gov.br/publicacoes/anuario-estatistico/5809-anuario-estatistico-2020. Acesso em: 01 dez. 2020.
Bolotova, Y., Connor, J. M., & Miller, D. J. (2008). The impact of collusion on price behavior: Empirical results from two recent cases. International Journal of Industrial Organization, 26(6), 1290-1307.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
Bueno, R. L. (2008). Econometria de séries temporais. Cengage Learning.
Buccirossi, P. (2006). Does parallel behavior provide some evidence of collusion?. Review of Law & Economics, 2(1), 85-102.
BRASIL. Lei nº 8.137, de 27 de dezembro de 1990. Define crimes contra a ordem tributária, econômica e contra as relações de consumo, e dá outras providências. Brasília, DF: Presidência da República, 1990. http://www.planalto.gov.br/ccivil_03/LEIS/L8137.htm. Acesso em: 12 dez. 2020.
Carrijo, G. D. (2019). Análise estatística dos preços de combustíveis para auxílio na detecção de cartéis no setor de distribuição. http://repositorio.enap.gov.br/handle/1/4111.
CONSELHO ADMINISTRATIVO DE DEFESA ECONÔMICA. (2009). Coleção SDE/CADE nº 01/2009: Combate a cartéis e programa de leniência. Diário Oficial da União, Brasília, DF, 3ª edição, 36 páginas, 2009. http://www.cade.gov.br/acesso-a-informacao/publicacoes-institucionais/documentos-da-antiga-lei/cartilha_leniencia.pdf.
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.
Enders, W. (2008). Applied econometric time series. John Wiley & Sons.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, 987-1007.
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The journal of finance, 48(5), 1779-1801.
Greene, W. H. (2000). Econometric analysis. 4th edition. International edition, New Jersey: Prentice Hall, 201-215.
Grout, P. A., & Sonderegger, S. M. I. A. (2007). Structural approaches to cartel detection. In European Competition Law Annual: 2006. Enforcement of Prohibition of Cartels (pp. 83-103). Hart Publishing.
Harrington, J. E. (2005). Detecting cartels. N. 526. working paper.
Harrington, J., 2006. Behavioral screening and the detection of cartels. In: ClausDieter, E., Atanasiu, I. (Eds.), European Competition Law Annual 2006: Enforcement of Prohibition of Cartels. Hart Publishing, Oxford, UK.
Harrington, J. E. (2012). A theory of tacit collusion N. 588. Working Paper.
Harrington Jr, J. E. (2021). The Practical Requirements of a Successful Cartel. Available at SSRN 3798852.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Frota de veículos, 2021. https://cidades.ibge.gov.br/brasil/pa/pesquisa/22/28120.
Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?.Journal of econometrics, 54(1-3), 159-178.
Marques, M. I. G. (2017). Aplicação dos modelos GARCH, EGARCH e TGARCH no DAX-30. Dissertação de Mestrado, Instituto Politécnico de Lisboa, Portugal. http://hdl.handle.net/10400.21/7211
Morettin, P. A. (2017). Econometria financeira: um curso em séries temporais financeiras. Editora Blucher.
Pedra, D. P., de Oliveira Bicalho, L. M. N., de Araújo Vilela, O., Baran, P. H., de Paiva, R. M., & de Melo, T. P. (2010). Metodologia adotada pela agência nacional do petróleo, gás natural e biocombustíveis para a detecção de cartéis. ANP, Rio de Janeiro.
Ragazzo, C. E. J., & Silva, R. D. (2006). Aspectos econômicos e jurídicos sobre cartéis na revenda de combustíveis: uma agenda para investigações. SEAE/MF Documento de trabalho, 40.
Robinson, J. (1969). The economics of imperfect competition. Springer.
Silva, A. S. (2016). Filtros de cartéis baseados em dinâmicas de preços: uma aplicação ao varejo de combustíveis do Brasil. 224 folhas. Tese (Doutorado) - UFJF, Programa de Pós-graduação em Economia, Juiz de Fora, Brasil.
Salvini, R. R., Burnquist, H. L., & Jacomini, R. L. (2017). Investigando a assimetria na transmissão dos preços dos combustíveis no Estado de São Paulo. Anais do Seminário Científico do UNIFACIG, (2).
Silveira, D., Vasconcelos, S., Bogossian, P., & Neto, J. (2021). Cartel screening in the Brazilian fuel retail market. EconomiA, 22(1), 53-70.
Vasconcelos, S. P., & Vasconcelos, C. F. (2008). Análise do comportamento estratégico em preços no mercado de gasolina brasileiro: modelando volatilidade. Análise Econômica, 26(50).
Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18(5), 931-955.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Estevão Miguel Cardoso da Silva; Brena do Nascimento Carvalho; Zilda Joaquina Cohen Gama dos Santos; Tarcísio da Costa Lobato
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.