Stress distribution in prosthetic abutments: a finite element analysis comparison of conical and UCLA abutments

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21461

Keywords:

Finite element analysis; Dental implants; Dental stress analysis.

Abstract

The effect of prosthetic abutment type on single-screwed prostheses in posterior mandibular molar rehabilitations is not yet known. Thus, the aim of this study was to evaluate the distribution of stresses in the crowns, prosthetic components, implant and bone in implant-supported restorations with or without a prosthetic abutment, maintaining an equal total height of the implant-crown set. Virtual 3-dimensional (3D) finite element models were constructed, the models were designed to represent a posterior single crown rehabilitation with a screwed retention system and external hexagon implants placed in the lower first molar region. Two rehabilitation methods were designed to simulate a monolithic zirconia crown screwed onto a conical abutment, which was screwed onto an external hexagon implant (M1); and a monolithic zirconia crown screwed directly onto the external hexagon implant using an UCLA abutment (M2). An axial load of 200 N was simulated and applied axially in the occlusal region of the restoration divided into 5 points. The quantitative and qualitative description of the maximum principal stress for crowns, von Mises stress for screws, conical abutment and implant; and minimal principal stress for cortical and medullary bone were evaluated. M1 presented similar stress distribution for crowns, cortical and medullary bone compared to M2. Conversely, the stress values were considerably higher for crowns screw and implants in the M2 group. In conclusion, single implant-supported rehabilitations of mandibular first molars using external hexagon implants presented better stress distribution on the crown screw and implants for the M1 group compared to M2.

References

Aalaei, S., Rajabi Naraki, Z., Nematollahi, F., Beyabanaki, E., & Shahrokhi Rad, A. (2017). Stress distribution pattern of screw-retained restorations with segmented vs. non-segmented abutments: A finite element analysis. J Dent Res Dent Clin Dent Prospects, 11(3):149-155. 10.15171/joddd.2017.027

Araújo, P. M., Filho, G. S., Ferreira, C. F., Magalhães Benfatti, C. A., Cagna, D. R., & Bianchini, M. A. (2018). Mechanical Complications Related to the Retention Screws of Prefabricated Metal Abutments With Different Angulations. Implant Dent, 27(2):209-212. 10.1097/id.0000000000000742

Bordin, D., de Castro, M. B., de Carvalho, M. A., de Araujo, A. M., Cury, A. A. D. B., & Lazari-Carvalho, P. C. (2021). Different treatment modalities using dental implants in the posterior maxilla: A finite element analysis. Braz Dent J, 32(1):34-41. 10.1590/0103-6440202103890

Brune, A., Stiesch, M., Eisenburger, M., & Greuling, A. (2019). The effect of different occlusal contact situations on peri-implant bone stress – A contact finite element analysis of indirect axial loading. Mater Sci Eng C, 99:367-373. 10.1016/j.msec.2019.01.104

Camargos, G. de V., Sotto-Maior, B. S., Silva, W. J., Lazari, P. C., & Del Bel Cury, A. A. (2016). Prosthetic abutment influences bone biomechanical behavior of immediately loaded implants. Braz Oral Res, 30(1):1-9. 10.1590/1807-3107BOR-2016.vol30.0065

Chun, H. J., Shin, H. S., Han, C. H., & Lee, S. H. (2005). Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants, 21(2):195-202. http://www.ncbi.nlm.nih.gov/pubmed/16634489.

Coelho, P. G., Bonfante, E. A., Silva, N. R. F., Rekow, E. D., & Thompson, V. P. (2009). Laboratory simulation of Y-TZP all-ceramic crown clinical failures. J Dent Res, 88(4):382-386. 10.1177/0022034509333968

Costa, C. M., Campos, F. O., Prassl, A. J., et al. (2014). An efficient finite element approach for modeling fibrotic clefts in the heart. IEEE Trans Biomed Eng, 61(3):900-910. 10.1109/TBME.2013.2292320

Cruz, M., Wassall, T., & Toledo, E. M. (2010). Finite element stress analysis of dental prostheses supported by straight and angled implants. J Prosthet Dent, 104(5):346. 10.1016/s0022-3913(10)60154-0

Das Neves, F. D., Elias, G. A., Da Silva-Neto, J. P., De Medeiros Dantas, L. C., Da Mota, A. R. S., & Neto, A. J. F. (2014). Comparison of implant- Butment interface misfits after casting and soldering procedures. J Oral Implantol, 40(2):129-135. 10.1563/AAID-JOI-D-11-00070

Di Fiore, A., Meneghello, R., Savio, G., Sivolella, S., Katsoulis, J., & Stellini, E. (2015). In Vitro Implant Impression Accuracy Using a New Photopolymerizing SDR Splinting Material. Clin Implant Dent Relat Res, 17:E721-E729.

Dias, E. C. L., Bisognin, E. D. C., Harari, N. D., et al. (2012). Evaluation of implant-abutment microgap and bacterial leakage in five external-hex implant systems: an in vitro study. Int J Oral Maxillofac Implants, 27(2):346-351. http://www.ncbi.nlm.nih.gov/pubmed/22442774.

Dini, C., Costa, R. C., Sukotjo, C., Takoudis, C. G., Mathew, M. T., & Barão, V. A. R. (2020). Progression of Bio-Tribocorrosion in Implant Dentistry. Front. Mech. Eng, 6:1. 10.3389/fmech.2020.00001

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. Editora Artes Médicas.

Jaime, A. P. G., De Vasconcellos, D. K., Mesquita, A. M. M., Kimpara, E. T. & Bottino, M. A. (2007). Effect of cast rectifiers on the marginal fit of UCLA abutments. J Appl Oral Sci, 15(3):169-174. 10.1590/S1678-77572007000300004

Jung, R. E., Zembic, A., Pjetursson, B. E., Zwahlen, M., & Thoma, D. S. (2012). Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res, 23(SUPPL.6):2-21. 10.1111/j.1600-0501.2012.02547.x

Lee, H., Jo, M., Sailer, I., & Noh, G. (2021). Effects of implant diameter, implant-abutment connection type, and bone density on the biomechanical stability of implant components and bone: A finite element analysis study. J Prosthet Dent, 1-13. 10.1016/j.prosdent.2020.08.042

Lemos, C. A. A., Verri, F. R., Noritomi, P. Y., et al. (2021). Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study. J Prosthet Dent, 125(1):137.e1-137.e10. 10.1016/j.prosdent.2020.06.029

Lima de Andrade, C., Carvalho, M., Bordin, D., da Silva, W., Del Bel Cury, A., & Sotto-Maior, B. (2017). Biomechanical Behavior of the Dental Implant Macrodesign. Int J Oral Maxillofac Implants, 32(2):264-270. 10.11607/jomi.4797

Mezzomo, L. A., Miller, R., Triches, D., Alonso, F., & Shinkai, R. S. A. (2014). Meta-analysis of single crowns supported by short (<10 mm) implants in the posterior region. J Clin Periodontol, 41(2):191-213. 10.1111/jcpe.12180

Ochiai, K. T., Ozawa, S., Caputo, A. A., & Nishimura, R. D. (2003). Photoelastic stress analysis of implant-tooth connected prostheses with segmented and nonsegmented abutments. J Prosthet Dent, 89(5):495-502. 10.1016/S0022-3913(03)00167-7

Pera, F., Menini, M., Bagnasco, F., Mussano, F., Ambrogio, G., & Pesce, P. (2021). Evaluation of internal and external hexagon connections in immediately loaded full-arch rehabilitations: A within-person randomized split-mouth controlled trial with a 3-year follow-up. Clin Implant Dent Relat Res, 23(4):562-567. 10.1111/cid.13029

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM.

Quek, H. C., Tan, R. K. B., & Nicholls, M. S. D. J. I. (2008). Load fatigue performance of four implant-abutment interface designs: Effect of torque level and implant system. J Prosthet Dent, 100(1):73. 10.1016/s0022-3913(08)60144-4

Tribst, J. P. M., Dal Piva, A. M. de O., da Silva-Concílio, L. R., Ausiello, P., & Kalman, L. (2021). Influence of Implant-Abutment Contact Surfaces and Prosthetic Screw Tightening on the Stress Concentration, Fatigue Life and Microgap Formation: A Finite Element Analysis. Oral, 1(2):88-101. 10.3390/oral1020009

Wang, J., Lerman, G., Bittner, N., Fan, W., Lalla, E., & Papapanou, P. N. (2020). Immediate versus delayed temporization at posterior single implant sites: A randomized controlled trial. J Clin Periodontol, 47(10):1281-1291. 10.1111/jcpe.13354

Downloads

Published

18/10/2021

How to Cite

ARAÚJO, C. G. .; MIRANDA, M. E. .; DINI, C.; SILVA, G. A. F. .; OLIVIERI, K. A. N. . Stress distribution in prosthetic abutments: a finite element analysis comparison of conical and UCLA abutments. Research, Society and Development, [S. l.], v. 10, n. 13, p. e445101321461, 2021. DOI: 10.33448/rsd-v10i13.21461. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21461. Acesso em: 3 dec. 2021.

Issue

Section

Health Sciences