Ventilator-associated pneumonia from polymyxin-resistant Pseudomonas aeruginosa: A systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i13.21480

Keywords:

Mechanical- associated pneumonia; Pseudomonas aeruginosa; Polymyxin; Bacterial resistance; Intensive care unit.

Abstract

Introduction: Mechanical-associated pneumonia (VAP) is identified as an implicit cause of mortality in patients hospitalized in Intensive Care Units (ICU). Pseudomonas aeruginosa is an important VAP agent that has multiple resistance to antimicrobials, being considered a serious public health problem. In this context, polymyxin antimicrobials are considered the best therapeutic option for the treatment of these diseases. Objective: To analyze the susceptibility profile and mechanisms of resistance to polymyxins in granting of P. aeruginosa causing VAP. Methods: A systematic review was conducted according to the Cochrane Handbook and the research and analysis of the articles followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA). Results: 22 articles were included and most were published from 2015, highlighting the year 2017 (22.7%), especially in Asian countries. 1,490 P. aeruginosa isolates recovered from ICU patients (16 pediatric ICUs) were analyzed. The susceptibility profile of the isolates to polymyxin B and/or colistin was determined by microdilution (40.9%) and Kirby-Bauer methods. 2.57% of the P. aeruginosa isolates were resistant to colistin and a lower resistance (1.87%) was observed for polymyxin B. Conclusion: No study investigated the presence of the plasmid gene encoding resistance to polymyxins (mcr) among the isolates, although this gene has already been reported in this species. Therefore, further research is needed to monitor the resistance and resistance mechanisms of P. aeruginosa to polymyxins, in order to preserve the therapeutic efficacy of this class of antibiotic.

References

ANVISA. (2013). Microbiologia Clínica para o controle de infecção relacionada à assistência à saúde, Módulo 6: Detecção e Identificação de Bactérias de Importância Médica. Brasília, 59-73. https://spdbcfmusp.files.wordpress.com/2014/09/iras_modulodeteccaobacterias.pdf.

Campos, F. C. C., & Canabrava, C. M. O Brasil na UTI: atenção hospitalar em tempos de pandemia, Universidade Federal de Minas Gerais, Belo Horizonte. https://doi.org/10.1590/SciELOPreprints.1368.

Carvalho, C. R. R. (2006). Pneumonia associada à ventilação mecânica, J. bras.pneumol, 32 (4). https://doi.org/10.1590/S1806-37132006000400003.

Cohen, P., & Blau, J. (2020). COVID-19: Outpatient evaluation and management of acute illness in adults. https://www.uptodate.com/contents/covid-19-outpatient-evaluation-and-management-of-acute-illness-in-adults.

Costa, F. J. M. D. (2017). Resistência à Polimixina B em bactérias Gram-negativas carbapenemos resistentes isoladas em hospitais do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Natal. https://repositorio.ufrn.br/handle/123456789/23159.

Doi, A. M., & Carvalhaes, C. G. (2017). Gene mcr-1 e resistência a Polimixina. Comitê Científico de Microbiologia da SBPC/ML. http://www.sbpc.org.br/wp-content/uploads/2017/11/Revista89_2017_web.pdf.

Ejaz, H., Younas, S., Qamar, M. U., Junaid, K., Abdalla, A. E., Aboslif, K. O. A., Alameen, A. A. M., Elamir, M. Y. M., Ahmad, N., Hamam, S. S. M., Salem, E. H. M., & Bukhari, S. N. A. (2021). Epidemiologia molecular de cepas bacterianas resistentes a colistina codificadas por mcr extensivamente resistente a drogas que coexpressamβ-lactamases multifárias, Antibióticos (Basel), 10 (4): 467. https://doi.org/ 10.3390/antibiotics10040467.

El-baky, R. M. A., Masoud, S. M., Mohamed, D. S., Waly, N. G. F. M., Shafik, E. A., Mohareb, D. A., Elkady, A., Elbadr, M. M., & Hetta, H. F. (2020). Prevalência e alguns mecanismos possíveis de resistência à colistina entre Pseudomonas aeruginosa multirresistente e extensivamente resistente a medicamentos, Infect Drug Resist, 13:323–332. https://doi.org/10.2147/IDR.S238811.

El-Mahdy, T. S. (2013). The extended-spectrum AmpC genotype of Pseudomonas aeruginosa strains from Egypt: An underlying threat to anti-pseudomonal treatment options. Journal of Chemotherapy, 26(3), 187–189. https://doi.org/10.1179/1973947813y.0000000119.

English, E. L., Schutz, K. C., Willsey, G. G., & Wargo, M. J. (2018). Transcriptional responses ofpseudomonas aeruginosa to potable water and freshwater. Applied and Environmental Microbiology, 84(6). https://doi.org/10.1128/aem.02350-17.

Ergul, A. B., Cetin, S., Altintop, Y. A., Bozdemir, S. E., & Ozcan, A., et al. (2017). Evaluation of Microorganisms Causing Ventilator-Associated Pneumonia in a Pediatric Intensive Care Unit, Eurasian J Med, 49: 87-91. https://doi.org/10.5152/eurasianjmed.2017.16262.

Goyal, P., Choi, J. J., Pinheiro, L. C., Schenck, E. J., Chen, R., Jabri, A., Satlin, M. J., Campion, T. R., Nahid, M., Ringel, J. B., Hoffman, K. L., Alshak, M. N., Li, H. A., Wehmeyer, G. T., Rajan, M., Reshetnyak, E., Hupert, N., Horn, E. M., Martinez, F. J., & Safford, M. M. (2020). Clinical characteristics of covid-19 in new york city. New England Journal of Medicine, 382(24), 2372–2374. https://doi.org/10.1056/nejmc2010419.

Hameed, F., Khan, M. A., Muhammad, H., Sarwar, T., Bilal, H., & Rehman, T. U. (2019). Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: First report from Pakistan. Revista da Sociedade Brasileira de Medicina Tropical, 52. https://doi.org/10.1590/0037-8682-0237-2019.

Hedfi, M., Khouni H., Massoudi, Y., Abdelhedi, C., Sassi, K., & Chouchen, A. (2016). Epidemiology of nosocomial infections: about 70 cases. TunisMed,94(7): 401-406. https://pubmed.ncbi.nlm.nih.gov/28051232.

Higgins, J. P. T., & Green S (editors). (2011). “Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]”, The Cochrane Collaboration, 2011. www.handbook.cochrane.org.

Holanda, M. A., & Pinheiro, B. V. (2020). Pandemia por COVID-19 e ventilação mecânica: enfrentando o presente, desenhando o futuro, J Bras Pneumol., 46(4): e20200282. https://doi.org/10.36416/1806- 3756/e202002.

Hughes, S., Troise, O., Donaldson, H., Mughal, N., & Moore, L. S. P. (2020). Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clinical Microbiology and Infection, 26(10), 1395–1399. https://doi.org/10.1016/j.cmi.2020.06.025.

IBGE, Índia. (2006). https://paises.ibge.gov.br/#/dados/india.

Khan, I. D., Basu, A., Kiran, S., Trivedi, S., Pandit, P., & Chattoraj, A. (2017). Device-Associated Healthcare-Associated Infections (DA-HAI) and the caveat of multiresistance in a multidisciplinary intensive care unit, Med J Armed Forces India, 73(3):222-231. https://doi.org/10.1016/j.mjafi.2016.10.008.

Lima, J. L. C., Alves, L. R., Paz, J. N. P., Rabelo, M. A., Maciel, M. A. V., & Morais, M. M. C. (2017). Análise da produção de biofilme por isolados clínicos de Pseudomonas aeruginosa de pacientes com pneumonia associada à ventilação mecânica, Rev. bras. ter. Intensive, 29 (3). https://doi.org/10.5935/0103-507X.20170039.

Lima, W. G., De brito, J. C. M., & Da cruz nizer, W. S. (2020). Ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19: Two problems, one solution? Medical Hypotheses, 110-139. https://doi.org/10.1016/j.mehy.2020.110139.

Mena, K. D., & Gerba, C. P. (2009). Risk assesment of Pseudomonas aeruginosa in water. Springer Sciene +Business Media, 71-1115. https://doi.org/10.1007/978-1-4419-0032-6_3.

Miller, F. (2018). Pneumonia associada a ventilação mecânica. Sociedade Brasileira de Anestesiologia. https://www.sbahq.org/wp- content/uploads/2018/07/382_portugues.pdf.

Ministério da saúde. (2021). Guia de Vigilância Epidemiológica. Emergência de Saúde Pública de importância nacional pela doença pelo coronavírus 2019. https://coronavirus.saude.mg.gov.br/images/1_2021/17-03Guia de vigilancia da covid 16marc2021.pdf .

Miyaki, M. (2005). Monitoramento microbiológico seqüencial da secreção traqueal em pacientes intubados internados em unidade de terapia intensiva pediátrica. Jornal de Pediatria, 81(1). https://doi.org/10.1590/s0021-75572005000100002.

Molina, D. NM. Colón, M., Bermúdez, R. H., & Ramíres-ronda, C. H. (1991). Unusual presentation of Pseudomonas aeruginosa infections: a review, BolAsocMed, 83(4):160-3. https://pubmed.ncbi.nlm.nih.gov/1816775.

Moradali, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00039.

Mota, E. C.; Oliveira, S. P., Silveira, B. R. M., Silva, P. L. N., & Oliveira, A. C. (2017). Incidência da pneumonia associada à ventilação mecânica em unidade de terapia intensiva. Medicina, Ribeirão Preto, 50(1), 39-46. http://dx.doi.org/10.11606/issn.2176-7262.v50i1p39-46.

Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2014). Microbiologia medica (5a ed.). Elsevier Espana.

Nitz, F., Melo, B. O., Silva, L. C. N., Monteiro, A. S., Marques, S. G., Monteiro-neto, V., Turri, R. J. G., Junior, A. D. S., Conceição, P. C. R., Magalhães, H. J. C., Zagmignan, A., Ferro, T. A. F., & Bomfim, M. R. Q. (2021). Molecular Detection of Drug-Resistance Genes of blaOXA-23-blaOXA-51 and mcr-1 in Clinical Isolates of Pseudomonas aeruginosa, Microorganisms, 9(4), 786. https://doi.org/10.3390/microorganisms9040786.

Noronha, K. V. M. S., Guedes, G. R., Turra, C. M., Andrade, M. VL. Botega, L., Nogueira, D., Calazans, J. A., Carvalho, L., Cervo, L., & Ferreira, M. F. (2020). Pandemia por COVID-19 no Brasil: análise da demanda e da oferta de leitos hospitalares e equipamentos de ventilação assistida segundo diferentes cenários, Cad. SaúdePública, 36 (6). https://doi.org/10.1590/0102-311X00115320.

Olaitan, A. O., Morand, S., & Rolain, J. M. (2014). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria,Front Microbiol,5: 643. https://doi.org/10.3389/fmicb.2014.00643.

Oliveira, M. M. M., Brugnera, D. F., & Piccoli, R. H. (2010). Biofilmes microbianos na indústria de alimentos: uma revisão, RevInst Adolfo Lutz, 69(3):277-84. http://www.ial.sp.gov.br/resources/insituto-adolfo-lutz/publicacoes/rial/10/rial69_3_completa/1289.pdf.

Oliveira, L. G., Ferreira, L. G. R., Nascimento, A. M. A., Reis, M. d. P., Dias, M. F., Lima, W. G., & Paiva, M. C. (2018). Antibiotic resistance profile and occurrence of AmpC between Pseudomonas aeruginosa isolated from a domestic full-scale WWTP in southeast Brazil. Water Science and Technology, 2017(1), 108–114. https://doi.org/10.2166/wst.2018.091.

ONU. (2019). População mundial deve ter mais 2 bilhões de pessoas nos próximos 30 anos. https://news.un.org/pt/story/2019/06/1676601.

OPAS. (2020). Manejo Clínico da COVID-19. Orientação provisória 27 de maio de 2020. Organização Pan-Americana da Saúde. https://iris.paho.org/bitstream/handle/10665.2/52285/OPASWBRACOVID1920075_por.pdf?sequence=1&isAllowed=y.

Pedersen, M.G., Olesen, H.V., Jensen-fangel, S., Norskov-lauritsen, N., & Wang, M. (2018). Colistin resistance in Pseudomonas aeruginosa and Achromobacterspp. cultured from Danish cystic fibrosis patients is not related to plasmid-mediated expression of mcr-1. Journal of Cystic Fibrosis, 17, I.2, E22-E23. https://doi.org/10.1016/j.jcf.2017.12.001.

Procop, G. W. (2017). Koneman. Diagnóstico microbiológico: Texto y atlas. Jones & Bartlett Learning.

Rawson, T. M., Moore, L. S. P., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M., Satta, G., Cooke, G., & Holmes, A. (2020). Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing,Clin Infect Dis,71(9): 2459-2468. https://doi.org/10.1093/cid/ciaa530.

Simar,S., Sibley, D., Ashcraft, D., & Pankey, G. (2017). Evaluation of the Rapid Polymyxin NP Test for Polymyxin B Resistance Detection Using Enterobacter cloacae and Enterobacter aerogenes Isolates. Journal of Clinical Microbiolog. 55 (10): 3016-3020. https://doi.org/10.1128/JCM.00934-17.

Siqueira, C. C., Guimarães, A. C., Mata, T. F. D., Pratte-santos, R., Raymundo, N. L. S., Dias, C. F., & Moraes, R. (2018). Prevalência de microrganismos e perfil de suscetibilidade antimicrobiana em um hospital universitário de Vitória (ES), Brasil, J. Bras. Patol. Med. Lab, Rio de Janeiro, 54, 2. https://doi.org/10.5935/1676-2444.20180014.

Soares, C. I. P., & Chambel, L. M. M. (2018). Identificação e Diferenciação de Pseudomonas aeruginosana Água, Superfícies e Equipamentos de Piscinas, Universidade de Lisboa. Departamento de Biologia vegetal, 2018. https://repositorio.ul.pt/bitstream/10451/35575/1/ulfc121896_tm_Cristina_Soares.pdf.

Tehrani, S., Saffarfar, V., Hashemi, A., & Abolghasemi, S. (2019). A Survey of Genotype and Resistance Patterns of Ventilator-Associated Pneumonia Organisms in ICU Patients,Tanaffos, 18(3): 215-222. https://pubmed.ncbi.nlm.nih.gov/32411261.

Vaara, M. (2019). Polymyxin derivatives that sensitize gram-negative bacteria to other antibiotics, Molecules, 24(2): 249. https://doi.org/10.3390/molecules24020249.

WHO. (2017). Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities http://apps.who.int/iris/bitstream/handle/10665/259462/9789241550178eng.pdf;jsessionid=0AAD6679A11CF41 A5327CC1DE8F1E7ED?sequence=1.

WHO. (2019). COVID-19 Clinical management. Clinical management of COVID-19: living guidance. https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-clinical-2021-1.

Published

21/10/2021

How to Cite

ROSA, L. N. .; CASTRO, A. P. de .; LIMA, W. G. de .; SIMIÃO, D. C. .; PAIVA, M. C. de . Ventilator-associated pneumonia from polymyxin-resistant Pseudomonas aeruginosa: A systematic review. Research, Society and Development, [S. l.], v. 10, n. 13, p. e555101321480, 2021. DOI: 10.33448/rsd-v10i13.21480. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/21480. Acesso em: 8 dec. 2021.

Issue

Section

Review Article