Tobacco stalk lignocellulosic nanofibers characterization for pharmaceutical applications




Tobacco stalk; Lignocellulosic nanofibers; Cellulose nanofibers; Characterization techniques; CNF.


Lignocellulosic nanofibers derived from tobacco stalk can have countless applications in polymers composites, textile, cosmetics, and pharmaceuticals. Thus, it is important to evaluate biomass characteristics such as the presence of nicotine. In this study, nanofibers were obtained by mechanical fibrillation while cellulose content (0.5 and 2.0%) and drying methods were varied. Nanofibers were characterized by thin layer chromatography, 1H NMR, morphological analysis, α-cellulose content, Fourier transform infrared spectroscopy, X-ray diffraction and thermal analysis. Results demonstrate the absence of nicotine in tobacco stalk. The grinding mill process was efficient to produce by freeze-drying, nanofibers with fiber’s mean diameter of ~30 nm. Solid concentrations can influence the diameter of obtained fibers. Thermal stability increased and crystallinity decreased when alkali treatment was applied. The characterization techniques applied enable the evaluation of tobacco stalk and expanded its application to pharmaceutics.


Abdul Khalil, H. P. S., Davoudpour, Y., Islam, Md. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649–665.

Agrupis, S. C., & Maekawa, E. (1999). Industrial Utilization of Tobacco Stalks (1) Preliminary Evaluation for Biomass Resources. Holzforschung, 53(1), 29–32.

Agrupis, S., Maekawa, E., & Suzuki, K. (2000). Industrial utilization of tobacco stalks II: preparation and characterization of tobacco pulp by steam explosion pulping. Journal of Wood Science, 46(3), 222–229.

Akpinar, O., Erdogan, K., Bakir, U., & Yilmaz, L. (2010). Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT - Food Science and Technology, 43(1), 119–125.

Ashori, A., Babaee, M., Jonoobi, M., & Hamzeh, Y. (2014). Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 102, 369–375.

Berger, S., & Sicker, D. (2009). Alkaloids. In Classics in spectroscopy : isolation and structure elucidation of natural products (First edition, pp. 1–128). Wiley-VCH.

Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154–169.

Carlsson, D. O., Hua, K., Forsgren, J., & Mihranyan, A. (2014). Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. International Journal of Pharmaceutics, 461(1–2), 74–81.

Chen, Z., Hu, T. Q., Jang, H. F., & Grant, E. (2015). Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohydrate Polymers, 127, 418–426.

Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720–725.

Credou, J., & Berthelot, T. (2014). Cellulose: from biocompatible to bioactive material. J. Mater. Chem. B, 2(30), 4767–4788.

Souza Lima, M. M., & Borsali, R. (2004). Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications, 25(7), 771–787.

Determination of structural carbohydrates and lignin in biomass. (2012).

Dinh Vu, N., Thi Tran, H., Bui, N. D., Duc Vu, C., & Viet Nguyen, H. (2017). Lignin and Cellulose Extraction from Vietnam’s Rice Straw Using Ultrasound-Assisted Alkaline Treatment Method. International Journal of Polymer Science, 2017, 1–8.

Gómez-Siurana, A., Marcilla, A., Beltrán, M., Berenguer, D., Martínez-Castellanos, I., & Menargues, S. (2013). TGA/FTIR study of tobacco and glycerol–tobacco mixtures. Thermochimica Acta, 573, 146–157.

Haafiz, M. K. M., Hassan, A., Khalil, H. P. S. A., Fazita, M. R. N., Islam, Md. S., Inuwa, I. M., Marliana, M. M., & Hussin, M. H. (2016). Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. International Journal of Biological Macromolecules, 85, 370–378.

Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 110(6), 3479–3500.

Han, J., Zhou, C., Wu, Y., Liu, F., & Wu, Q. (2013). Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules, 14(5), 1529–1540.

Hosu, A., & Cimpoiu, C. (2015). A simple tlc method for evaluation of nicotine in cigarettes. Studia UBB Chemia, 60(4), 107–114.

Iwamoto, S., Nakagaito, A. N., & Yano, H. (2007). Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, 89(2), 461–466.

James F. Pankow, *,†, Kelley C. Barsanti, † and, & Peyton‡, D. H. (2002). Fraction of Free-Base Nicotine in Fresh Smoke Particulate Matter from the Eclipse “Cigarette” by 1H NMR Spectroscopy.

Jia, X., Chen, Y., Shi, C., Ye, Y., Abid, M., Jabbar, S., Wang, P., Zeng, X., & Wu, T. (2014). Rheological properties of an amorphous cellulose suspension. Food Hydrocolloids, 39, 27–33.

Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 1–35.

Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85–89.

Kaushik, A., & Singh, M. (2011). Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research, 346(1), 76–85.

Kaya, A., Hundley, M., Boydoh, A., & Hanson, B. (2018). Characterization of tobacco stalk bleached pulp. In cellulose chemistry and technology Cellulose Chem. Technol (Vol. 52, Issue 6).

Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., Kramer, F., Kondo, T., Lindström, T., Nietzsche, S., Petzold-Welcke, K., & Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. In Materials Today (Vol. 21, Issue 7).

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, 44(22), 3358–3393.

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50(24), 5438–5466.

Kolakovic, R., Peltonen, L., Laaksonen, T., Putkisto, K., Laukkanen, A., & Hirvonen, J. (2011). Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech, 12(4), 1366–1373.

Kolakovic, R., Peltonen, L., Laukkanen, A., Hellman, M., Laaksonen, P., Linder, M. B., Hirvonen, J., & Laaksonen, T. (2013). Evaluation of drug interactions with nanofibrillar cellulose. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 1238–1244.

Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., & Laaksonen, T. (2012). Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 82(2), 308–315.

Kulić, G. J., & Radojicic, V. B. (2011). analysis of cellulose content in stalks and leaves of large leaf tobacco. Journal of Agricultural Sciences, 56(3), 207–215. K

Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735–764.

Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955–963.

Lengowski, E. C., Muniz, G. I. B. de, Nisgoski, S., & Magalhães, W. L. E. (2013). Cellulose acquirement evaluation methods with different degrees of crystallinity. Scientia Forestalis, 41(98), 185–194.

Li Xiaoping, Wu Zhangkang, Y. G. (2014). Influence of the Mechanical Properties of Tobacco Stalk Fiber Cell Wall on Particleboard Panels. Advances in Materials Science and Applications, 3(1), 1–5.

Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325.

Maafi, E. M., Malek, F., Tighzert, L., & Dony, P. (2010). Synthesis of Polyurethane and Characterization of its Composites Based on Alfa Cellulose Fibers. Journal of Polymers and the Environment, 18(4), 638–646.

Macedo, V. de, Zimmermmann, M. V. G., Koester, L. S., Scienza, L. C., & Zattera, A. J. (2017). Obtenção de espumas flexíveis de poliuretano com celulose de Pinus elliottii. Polímeros, 27(spe).

MDIC. (2020). Exportação - Fumo em folhas e desperdícios. Ministério Do Desenvolvimento, Indústria e Comércio Exterior.

Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. Journal of Polymers and the Environment, 10(1/2), 19–26.

Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically Transparent Nanofiber Paper. Advanced Materials, 21(16), 1595–1598.

Ouajai, S., Hodzic, A., & Shanks, R. A. (2004). Morphological and grafting modification of natural cellulose fibers. Journal of Applied Polymer Science, 94(6), 2456–2465.

Pachuau, L. S. (2015). A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications. In Mini-Reviews in Medicinal Chemistry (Vol. 15, Issue 7, pp. 543–552).

Peng, Y., Gardner, D. J., & Han, Y. (2012). Drying cellulose nanofibrils: in search of a suitable method. Cellulose, 19(1), 91–102.

Peng, Y., Gardner, D. J., Han, Y., Kiziltas, A., Cai, Z., & Tshabalala, M. A. (2013). Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 20(5), 2379–2392.

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012a). Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 126(S1), E337–E344.

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012b). Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12.

Ramiah, M. v. (1970). Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 14(5), 1323–1337.

Roman, M. (2015). Toxicity of Cellulose Nanocrystals: A Review. Industrial Biotechnology, 11(1), 25–33.

Rosa, S. M. L., Rehman, N., de Miranda, M. I. G., Nachtigall, S. M. B., & Bica, C. I. D. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2), 1131–1138.

Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794.

Shakhes, J., Marandi, M. A. B., Zeinaly, F., Saraian, A., & Saghafi, T. (2011). Tobacco residuals as promising lignocellulosic materials for pulp and paper industry. BioResources, 6(4), 4481–4493.

Shen, D. K., Gu, S., & Bridgwater, A. V. (2010). The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydrate Polymers, 82(1), 39–45.

Soni, B., Hassan, E. B., & Mahmoud, B. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134, 581–589.

Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2011). A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4), 1097–1111.

TAPPI. (1997). T 204 cm-97 - Solvent extractives of wood and pulp.

TAPPI. (2002). T 222 om-02. Acid-insoluble lignin in wood and pulp.

Trache, D., Donnot, A., Khimeche, K., Benelmir, R., & Brosse, N. (2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate Polymers, 104, 223–230.

Trache, D., Hussin, M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: Sources and production. Nanoscale, 9(5), 1763–1786.

Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789–804.

Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. In Frontiers in Chemistry (Vol. 8). Frontiers Media S.A.

Tuzzin, G., Godinho, M., Dettmer, A., & Zattera, A. J. (2016). Nanofibrillated cellulose from tobacco industry wastes. Carbohydrate Polymers, 148, 69–77.

USP 42. (2019). The United States Pharmacopeial Convention Inc. Rockville, American Pharmaceutical Association.

Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., Hokkinen, J., Tapper, U., Lahtinen, P., Kapanen, A., Putkisto, K., Hiekkataipale, P., Eronen, P., Ruokolainen, J., & Laukkanen, A. (2011). Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 18(3), 775–786.

Wagner, H., & Bladt, S. (1996). Plant Drug Analysis (Second Edition). Springer Berlin Heidelberg.

Wongsiriamnuay, T., & Tippayawong, N. (2010). Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresource Technology, 101(14), 5638–5644.

Zanini, M., Lavoratti, A., Zimmermann, M. V., Galiotto, D., Matana, F., Baldasso, C., & Zattera, A. J. (2017). Aerogel preparation from short cellulose nanofiber of the Eucalyptus species. Journal of Cellular Plastics, 53(5).

Zimmermann, M. V., Borsoi, C., Lavoratti, A., Zanini, M., Zattera, A. J., & Santana, R. M. (2016). Drying techniques applied to cellulose nanofibers. Journal of Reinforced Plastics and Composites, 35(8).




How to Cite

GARCIA, K. R.; WEISS-ANGELI, V.; KOESTER, L. S.; SANTOS, V. dos; BRANDALISE, R. N. Tobacco stalk lignocellulosic nanofibers characterization for pharmaceutical applications. Research, Society and Development, [S. l.], v. 10, n. 14, p. e522101422261, 2021. DOI: 10.33448/rsd-v10i14.22261. Disponível em: Acesso em: 14 jul. 2024.