Tobacco stalk lignocellulosic nanofibers characterization for pharmaceutical applications
DOI:
https://doi.org/10.33448/rsd-v10i14.22261Keywords:
Tobacco stalk; Lignocellulosic nanofibers; Cellulose nanofibers; Characterization techniques; CNF.Abstract
Lignocellulosic nanofibers derived from tobacco stalk can have countless applications in polymers composites, textile, cosmetics, and pharmaceuticals. Thus, it is important to evaluate biomass characteristics such as the presence of nicotine. In this study, nanofibers were obtained by mechanical fibrillation while cellulose content (0.5 and 2.0%) and drying methods were varied. Nanofibers were characterized by thin layer chromatography, 1H NMR, morphological analysis, α-cellulose content, Fourier transform infrared spectroscopy, X-ray diffraction and thermal analysis. Results demonstrate the absence of nicotine in tobacco stalk. The grinding mill process was efficient to produce by freeze-drying, nanofibers with fiber’s mean diameter of ~30 nm. Solid concentrations can influence the diameter of obtained fibers. Thermal stability increased and crystallinity decreased when alkali treatment was applied. The characterization techniques applied enable the evaluation of tobacco stalk and expanded its application to pharmaceutics.
References
Abdul Khalil, H. P. S., Davoudpour, Y., Islam, Md. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649–665. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.08.069
Agrupis, S. C., & Maekawa, E. (1999). Industrial Utilization of Tobacco Stalks (1) Preliminary Evaluation for Biomass Resources. Holzforschung, 53(1), 29–32. https://doi.org/10.1515/HF.1999.005
Agrupis, S., Maekawa, E., & Suzuki, K. (2000). Industrial utilization of tobacco stalks II: preparation and characterization of tobacco pulp by steam explosion pulping. Journal of Wood Science, 46(3), 222–229. https://doi.org/10.1007/BF00776453
Akpinar, O., Erdogan, K., Bakir, U., & Yilmaz, L. (2010). Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT - Food Science and Technology, 43(1), 119–125. https://doi.org/10.1016/J.LWT.2009.06.025
Ashori, A., Babaee, M., Jonoobi, M., & Hamzeh, Y. (2014). Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 102, 369–375. https://doi.org/10.1016/J.CARBPOL.2013.11.067
Berger, S., & Sicker, D. (2009). Alkaloids. In Classics in spectroscopy : isolation and structure elucidation of natural products (First edition, pp. 1–128). Wiley-VCH.
Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154–169. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.01.033
Carlsson, D. O., Hua, K., Forsgren, J., & Mihranyan, A. (2014). Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. International Journal of Pharmaceutics, 461(1–2), 74–81. https://doi.org/10.1016/J.IJPHARM.2013.11.032
Chen, Z., Hu, T. Q., Jang, H. F., & Grant, E. (2015). Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohydrate Polymers, 127, 418–426. https://doi.org/10.1016/J.CARBPOL.2015.03.084
Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720–725. https://doi.org/10.1016/J.CARBPOL.2010.03.046
Credou, J., & Berthelot, T. (2014). Cellulose: from biocompatible to bioactive material. J. Mater. Chem. B, 2(30), 4767–4788. https://doi.org/10.1039/C4TB00431K
Souza Lima, M. M., & Borsali, R. (2004). Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications, 25(7), 771–787. https://doi.org/10.1002/marc.200300268
Determination of structural carbohydrates and lignin in biomass. (2012). http://www.nrel.gov/biomass/analytical_procedures.html
Dinh Vu, N., Thi Tran, H., Bui, N. D., Duc Vu, C., & Viet Nguyen, H. (2017). Lignin and Cellulose Extraction from Vietnam’s Rice Straw Using Ultrasound-Assisted Alkaline Treatment Method. International Journal of Polymer Science, 2017, 1–8. https://doi.org/10.1155/2017/1063695
Gómez-Siurana, A., Marcilla, A., Beltrán, M., Berenguer, D., Martínez-Castellanos, I., & Menargues, S. (2013). TGA/FTIR study of tobacco and glycerol–tobacco mixtures. Thermochimica Acta, 573, 146–157. https://doi.org/10.1016/J.TCA.2013.09.007
Haafiz, M. K. M., Hassan, A., Khalil, H. P. S. A., Fazita, M. R. N., Islam, Md. S., Inuwa, I. M., Marliana, M. M., & Hussin, M. H. (2016). Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. International Journal of Biological Macromolecules, 85, 370–378. https://doi.org/10.1016/J.IJBIOMAC.2016.01.004
Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 110(6), 3479–3500. https://doi.org/10.1021/cr900339w
Han, J., Zhou, C., Wu, Y., Liu, F., & Wu, Q. (2013). Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules, 14(5), 1529–1540. https://doi.org/10.1021/bm4001734
Hosu, A., & Cimpoiu, C. (2015). A simple tlc method for evaluation of nicotine in cigarettes. Studia UBB Chemia, 60(4), 107–114.
Iwamoto, S., Nakagaito, A. N., & Yano, H. (2007). Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, 89(2), 461–466. https://doi.org/10.1007/s00339-007-4175-6
James F. Pankow, *,†, Kelley C. Barsanti, † and, & Peyton‡, D. H. (2002). Fraction of Free-Base Nicotine in Fresh Smoke Particulate Matter from the Eclipse “Cigarette” by 1H NMR Spectroscopy. https://doi.org/10.1021/TX020050C
Jia, X., Chen, Y., Shi, C., Ye, Y., Abid, M., Jabbar, S., Wang, P., Zeng, X., & Wu, T. (2014). Rheological properties of an amorphous cellulose suspension. Food Hydrocolloids, 39, 27–33. https://doi.org/https://doi.org/10.1016/j.foodhyd.2013.12.026
Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 1–35. https://doi.org/10.1155/2011/837875
Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85–89. https://doi.org/10.1016/J.COLSURFB.2013.02.016
Kaushik, A., & Singh, M. (2011). Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research, 346(1), 76–85. https://doi.org/10.1016/J.CARRES.2010.10.020
Kaya, A., Hundley, M., Boydoh, A., & Hanson, B. (2018). Characterization of tobacco stalk bleached pulp. In cellulose chemistry and technology Cellulose Chem. Technol (Vol. 52, Issue 6).
Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., Kramer, F., Kondo, T., Lindström, T., Nietzsche, S., Petzold-Welcke, K., & Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. In Materials Today (Vol. 21, Issue 7). https://doi.org/10.1016/j.mattod.2018.02.001
Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, 44(22), 3358–3393. https://doi.org/10.1002/anie.200460587
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50(24), 5438–5466. https://doi.org/10.1002/anie.201001273
Kolakovic, R., Peltonen, L., Laaksonen, T., Putkisto, K., Laukkanen, A., & Hirvonen, J. (2011). Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech, 12(4), 1366–1373. https://doi.org/10.1208/s12249-011-9705-z
Kolakovic, R., Peltonen, L., Laukkanen, A., Hellman, M., Laaksonen, P., Linder, M. B., Hirvonen, J., & Laaksonen, T. (2013). Evaluation of drug interactions with nanofibrillar cellulose. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 1238–1244. https://doi.org/10.1016/J.EJPB.2013.05.015
Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., & Laaksonen, T. (2012). Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 82(2), 308–315. https://doi.org/10.1016/J.EJPB.2012.06.011
Kulić, G. J., & Radojicic, V. B. (2011). analysis of cellulose content in stalks and leaves of large leaf tobacco. Journal of Agricultural Sciences, 56(3), 207–215. https://doi.org/10.2298/JAS1103207 K
Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735–764. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.05.026
Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955–963. https://doi.org/10.1016/J.CARBPOL.2015.10.008
Lengowski, E. C., Muniz, G. I. B. de, Nisgoski, S., & Magalhães, W. L. E. (2013). Cellulose acquirement evaluation methods with different degrees of crystallinity. Scientia Forestalis, 41(98), 185–194. https://www.cabdirect.org/cabdirect/abstract/20133280551
Li Xiaoping, Wu Zhangkang, Y. G. (2014). Influence of the Mechanical Properties of Tobacco Stalk Fiber Cell Wall on Particleboard Panels. Advances in Materials Science and Applications, 3(1), 1–5. https://doi.org/10.5963/AMSA0301001
Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2014.07.025
Maafi, E. M., Malek, F., Tighzert, L., & Dony, P. (2010). Synthesis of Polyurethane and Characterization of its Composites Based on Alfa Cellulose Fibers. Journal of Polymers and the Environment, 18(4), 638–646. https://doi.org/10.1007/s10924-010-0218-8
Macedo, V. de, Zimmermmann, M. V. G., Koester, L. S., Scienza, L. C., & Zattera, A. J. (2017). Obtenção de espumas flexíveis de poliuretano com celulose de Pinus elliottii. Polímeros, 27(spe). https://doi.org/10.1590/0104-1428.2212
MDIC. (2020). Exportação - Fumo em folhas e desperdícios. Ministério Do Desenvolvimento, Indústria e Comércio Exterior. http://comexstat.mdic.gov.br/pt/comex-vis
Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. Journal of Polymers and the Environment, 10(1/2), 19–26. https://doi.org/10.1023/A:1021013921916
Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically Transparent Nanofiber Paper. Advanced Materials, 21(16), 1595–1598. https://doi.org/10.1002/adma.200803174
Ouajai, S., Hodzic, A., & Shanks, R. A. (2004). Morphological and grafting modification of natural cellulose fibers. Journal of Applied Polymer Science, 94(6), 2456–2465. https://doi.org/10.1002/app.21191
Pachuau, L. S. (2015). A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications. In Mini-Reviews in Medicinal Chemistry (Vol. 15, Issue 7, pp. 543–552). https://doi.org/http://dx.doi.org/10.2174/1389557515666150415150327
Peng, Y., Gardner, D. J., & Han, Y. (2012). Drying cellulose nanofibrils: in search of a suitable method. Cellulose, 19(1), 91–102. https://doi.org/10.1007/s10570-011-9630-z
Peng, Y., Gardner, D. J., Han, Y., Kiziltas, A., Cai, Z., & Tshabalala, M. A. (2013). Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 20(5), 2379–2392. https://doi.org/10.1007/s10570-013-0019-z
Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012a). Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 126(S1), E337–E344. https://doi.org/10.1002/app.36991
Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012b). Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12. https://doi.org/10.1016/J.BIORTECH.2012.08.133
Ramiah, M. v. (1970). Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 14(5), 1323–1337. https://doi.org/10.1002/app.1970.070140518
Roman, M. (2015). Toxicity of Cellulose Nanocrystals: A Review. Industrial Biotechnology, 11(1), 25–33. https://doi.org/10.1089/ind.2014.0024
Rosa, S. M. L., Rehman, N., de Miranda, M. I. G., Nachtigall, S. M. B., & Bica, C. I. D. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2), 1131–1138. https://doi.org/10.1016/J.CARBPOL.2011.08.084
Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
Shakhes, J., Marandi, M. A. B., Zeinaly, F., Saraian, A., & Saghafi, T. (2011). Tobacco residuals as promising lignocellulosic materials for pulp and paper industry. BioResources, 6(4), 4481–4493. https://doi.org/10.15376/biores.6.4.4481-4493
Shen, D. K., Gu, S., & Bridgwater, A. V. (2010). The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydrate Polymers, 82(1), 39–45. https://doi.org/10.1016/J.CARBPOL.2010.04.018
Soni, B., Hassan, E. B., & Mahmoud, B. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134, 581–589. https://doi.org/10.1016/J.CARBPOL.2015.08.031
Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2011). A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4), 1097–1111. https://doi.org/10.1007/s10570-011-9533-z
TAPPI. (1997). T 204 cm-97 - Solvent extractives of wood and pulp.
TAPPI. (2002). T 222 om-02. Acid-insoluble lignin in wood and pulp.
Trache, D., Donnot, A., Khimeche, K., Benelmir, R., & Brosse, N. (2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate Polymers, 104, 223–230. https://doi.org/10.1016/J.CARBPOL.2014.01.058
Trache, D., Hussin, M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: Sources and production. Nanoscale, 9(5), 1763–1786. https://doi.org/10.1039/c6nr09494e
Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789–804. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.09.056
Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. In Frontiers in Chemistry (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fchem.2020.00392
Tuzzin, G., Godinho, M., Dettmer, A., & Zattera, A. J. (2016). Nanofibrillated cellulose from tobacco industry wastes. Carbohydrate Polymers, 148, 69–77. https://doi.org/10.1016/J.CARBPOL.2016.04.045
USP 42. (2019). The United States Pharmacopeial Convention Inc. Rockville, American Pharmaceutical Association.
Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., Hokkinen, J., Tapper, U., Lahtinen, P., Kapanen, A., Putkisto, K., Hiekkataipale, P., Eronen, P., Ruokolainen, J., & Laukkanen, A. (2011). Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 18(3), 775–786. https://doi.org/10.1007/s10570-011-9501-7
Wagner, H., & Bladt, S. (1996). Plant Drug Analysis (Second Edition). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00574-9
Wongsiriamnuay, T., & Tippayawong, N. (2010). Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresource Technology, 101(14), 5638–5644. https://doi.org/https://doi.org/10.1016/j.biortech.2010.02.037
Zanini, M., Lavoratti, A., Zimmermann, M. V., Galiotto, D., Matana, F., Baldasso, C., & Zattera, A. J. (2017). Aerogel preparation from short cellulose nanofiber of the Eucalyptus species. Journal of Cellular Plastics, 53(5). https://doi.org/10.1177/0021955X16670590
Zimmermann, M. V., Borsoi, C., Lavoratti, A., Zanini, M., Zattera, A. J., & Santana, R. M. (2016). Drying techniques applied to cellulose nanofibers. Journal of Reinforced Plastics and Composites, 35(8). https://doi.org/10.1177/0731684415626286
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Keth Ribeiro Garcia; Valeria Weiss-Angeli; Letícia Scherer Koester; Venina dos Santos; Rosmary Nichele Brandalise
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.