Tobacco stalk lignocellulosic nanofibers characterization for pharmaceutical applications

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22261

Keywords:

Tobacco stalk; Lignocellulosic nanofibers; Cellulose nanofibers; Characterization techniques; CNF.

Abstract

Lignocellulosic nanofibers derived from tobacco stalk can have countless applications in polymers composites, textile, cosmetics, and pharmaceuticals. Thus, it is important to evaluate biomass characteristics such as the presence of nicotine. In this study, nanofibers were obtained by mechanical fibrillation while cellulose content (0.5 and 2.0%) and drying methods were varied. Nanofibers were characterized by thin layer chromatography, 1H NMR, morphological analysis, α-cellulose content, Fourier transform infrared spectroscopy, X-ray diffraction and thermal analysis. Results demonstrate the absence of nicotine in tobacco stalk. The grinding mill process was efficient to produce by freeze-drying, nanofibers with fiber’s mean diameter of ~30 nm. Solid concentrations can influence the diameter of obtained fibers. Thermal stability increased and crystallinity decreased when alkali treatment was applied. The characterization techniques applied enable the evaluation of tobacco stalk and expanded its application to pharmaceutics.

References

Abdul Khalil, H. P. S., Davoudpour, Y., Islam, Md. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, 649–665. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.08.069

Agrupis, S. C., & Maekawa, E. (1999). Industrial Utilization of Tobacco Stalks (1) Preliminary Evaluation for Biomass Resources. Holzforschung, 53(1), 29–32. https://doi.org/10.1515/HF.1999.005

Agrupis, S., Maekawa, E., & Suzuki, K. (2000). Industrial utilization of tobacco stalks II: preparation and characterization of tobacco pulp by steam explosion pulping. Journal of Wood Science, 46(3), 222–229. https://doi.org/10.1007/BF00776453

Akpinar, O., Erdogan, K., Bakir, U., & Yilmaz, L. (2010). Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT - Food Science and Technology, 43(1), 119–125. https://doi.org/10.1016/J.LWT.2009.06.025

Ashori, A., Babaee, M., Jonoobi, M., & Hamzeh, Y. (2014). Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 102, 369–375. https://doi.org/10.1016/J.CARBPOL.2013.11.067

Berger, S., & Sicker, D. (2009). Alkaloids. In Classics in spectroscopy : isolation and structure elucidation of natural products (First edition, pp. 1–128). Wiley-VCH.

Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154–169. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.01.033

Carlsson, D. O., Hua, K., Forsgren, J., & Mihranyan, A. (2014). Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. International Journal of Pharmaceutics, 461(1–2), 74–81. https://doi.org/10.1016/J.IJPHARM.2013.11.032

Chen, Z., Hu, T. Q., Jang, H. F., & Grant, E. (2015). Modification of xylan in alkaline treated bleached hardwood kraft pulps as classified by attenuated total-internal-reflection (ATR) FTIR spectroscopy. Carbohydrate Polymers, 127, 418–426. https://doi.org/10.1016/J.CARBPOL.2015.03.084

Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720–725. https://doi.org/10.1016/J.CARBPOL.2010.03.046

Credou, J., & Berthelot, T. (2014). Cellulose: from biocompatible to bioactive material. J. Mater. Chem. B, 2(30), 4767–4788. https://doi.org/10.1039/C4TB00431K

Souza Lima, M. M., & Borsali, R. (2004). Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications, 25(7), 771–787. https://doi.org/10.1002/marc.200300268

Determination of structural carbohydrates and lignin in biomass. (2012). http://www.nrel.gov/biomass/analytical_procedures.html

Dinh Vu, N., Thi Tran, H., Bui, N. D., Duc Vu, C., & Viet Nguyen, H. (2017). Lignin and Cellulose Extraction from Vietnam’s Rice Straw Using Ultrasound-Assisted Alkaline Treatment Method. International Journal of Polymer Science, 2017, 1–8. https://doi.org/10.1155/2017/1063695

Gómez-Siurana, A., Marcilla, A., Beltrán, M., Berenguer, D., Martínez-Castellanos, I., & Menargues, S. (2013). TGA/FTIR study of tobacco and glycerol–tobacco mixtures. Thermochimica Acta, 573, 146–157. https://doi.org/10.1016/J.TCA.2013.09.007

Haafiz, M. K. M., Hassan, A., Khalil, H. P. S. A., Fazita, M. R. N., Islam, Md. S., Inuwa, I. M., Marliana, M. M., & Hussin, M. H. (2016). Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. International Journal of Biological Macromolecules, 85, 370–378. https://doi.org/10.1016/J.IJBIOMAC.2016.01.004

Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 110(6), 3479–3500. https://doi.org/10.1021/cr900339w

Han, J., Zhou, C., Wu, Y., Liu, F., & Wu, Q. (2013). Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules, 14(5), 1529–1540. https://doi.org/10.1021/bm4001734

Hosu, A., & Cimpoiu, C. (2015). A simple tlc method for evaluation of nicotine in cigarettes. Studia UBB Chemia, 60(4), 107–114.

Iwamoto, S., Nakagaito, A. N., & Yano, H. (2007). Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, 89(2), 461–466. https://doi.org/10.1007/s00339-007-4175-6

James F. Pankow, *,†, Kelley C. Barsanti, † and, & Peyton‡, D. H. (2002). Fraction of Free-Base Nicotine in Fresh Smoke Particulate Matter from the Eclipse “Cigarette” by 1H NMR Spectroscopy. https://doi.org/10.1021/TX020050C

Jia, X., Chen, Y., Shi, C., Ye, Y., Abid, M., Jabbar, S., Wang, P., Zeng, X., & Wu, T. (2014). Rheological properties of an amorphous cellulose suspension. Food Hydrocolloids, 39, 27–33. https://doi.org/https://doi.org/10.1016/j.foodhyd.2013.12.026

Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 1–35. https://doi.org/10.1155/2011/837875

Kalita, R. D., Nath, Y., Ochubiojo, M. E., & Buragohain, A. K. (2013). Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids and Surfaces B: Biointerfaces, 108, 85–89. https://doi.org/10.1016/J.COLSURFB.2013.02.016

Kaushik, A., & Singh, M. (2011). Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research, 346(1), 76–85. https://doi.org/10.1016/J.CARRES.2010.10.020

Kaya, A., Hundley, M., Boydoh, A., & Hanson, B. (2018). Characterization of tobacco stalk bleached pulp. In cellulose chemistry and technology Cellulose Chem. Technol (Vol. 52, Issue 6).

Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., Kramer, F., Kondo, T., Lindström, T., Nietzsche, S., Petzold-Welcke, K., & Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. In Materials Today (Vol. 21, Issue 7). https://doi.org/10.1016/j.mattod.2018.02.001

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, 44(22), 3358–3393. https://doi.org/10.1002/anie.200460587

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50(24), 5438–5466. https://doi.org/10.1002/anie.201001273

Kolakovic, R., Peltonen, L., Laaksonen, T., Putkisto, K., Laukkanen, A., & Hirvonen, J. (2011). Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech, 12(4), 1366–1373. https://doi.org/10.1208/s12249-011-9705-z

Kolakovic, R., Peltonen, L., Laukkanen, A., Hellman, M., Laaksonen, P., Linder, M. B., Hirvonen, J., & Laaksonen, T. (2013). Evaluation of drug interactions with nanofibrillar cellulose. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 1238–1244. https://doi.org/10.1016/J.EJPB.2013.05.015

Kolakovic, R., Peltonen, L., Laukkanen, A., Hirvonen, J., & Laaksonen, T. (2012). Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 82(2), 308–315. https://doi.org/10.1016/J.EJPB.2012.06.011

Kulić, G. J., & Radojicic, V. B. (2011). analysis of cellulose content in stalks and leaves of large leaf tobacco. Journal of Agricultural Sciences, 56(3), 207–215. https://doi.org/10.2298/JAS1103207 K

Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735–764. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.05.026

Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955–963. https://doi.org/10.1016/J.CARBPOL.2015.10.008

Lengowski, E. C., Muniz, G. I. B. de, Nisgoski, S., & Magalhães, W. L. E. (2013). Cellulose acquirement evaluation methods with different degrees of crystallinity. Scientia Forestalis, 41(98), 185–194. https://www.cabdirect.org/cabdirect/abstract/20133280551

Li Xiaoping, Wu Zhangkang, Y. G. (2014). Influence of the Mechanical Properties of Tobacco Stalk Fiber Cell Wall on Particleboard Panels. Advances in Materials Science and Applications, 3(1), 1–5. https://doi.org/10.5963/AMSA0301001

Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302–325. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2014.07.025

Maafi, E. M., Malek, F., Tighzert, L., & Dony, P. (2010). Synthesis of Polyurethane and Characterization of its Composites Based on Alfa Cellulose Fibers. Journal of Polymers and the Environment, 18(4), 638–646. https://doi.org/10.1007/s10924-010-0218-8

Macedo, V. de, Zimmermmann, M. V. G., Koester, L. S., Scienza, L. C., & Zattera, A. J. (2017). Obtenção de espumas flexíveis de poliuretano com celulose de Pinus elliottii. Polímeros, 27(spe). https://doi.org/10.1590/0104-1428.2212

MDIC. (2020). Exportação - Fumo em folhas e desperdícios. Ministério Do Desenvolvimento, Indústria e Comércio Exterior. http://comexstat.mdic.gov.br/pt/comex-vis

Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. Journal of Polymers and the Environment, 10(1/2), 19–26. https://doi.org/10.1023/A:1021013921916

Nogi, M., Iwamoto, S., Nakagaito, A. N., & Yano, H. (2009). Optically Transparent Nanofiber Paper. Advanced Materials, 21(16), 1595–1598. https://doi.org/10.1002/adma.200803174

Ouajai, S., Hodzic, A., & Shanks, R. A. (2004). Morphological and grafting modification of natural cellulose fibers. Journal of Applied Polymer Science, 94(6), 2456–2465. https://doi.org/10.1002/app.21191

Pachuau, L. S. (2015). A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications. In Mini-Reviews in Medicinal Chemistry (Vol. 15, Issue 7, pp. 543–552). https://doi.org/http://dx.doi.org/10.2174/1389557515666150415150327

Peng, Y., Gardner, D. J., & Han, Y. (2012). Drying cellulose nanofibrils: in search of a suitable method. Cellulose, 19(1), 91–102. https://doi.org/10.1007/s10570-011-9630-z

Peng, Y., Gardner, D. J., Han, Y., Kiziltas, A., Cai, Z., & Tshabalala, M. A. (2013). Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 20(5), 2379–2392. https://doi.org/10.1007/s10570-013-0019-z

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012a). Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 126(S1), E337–E344. https://doi.org/10.1002/app.36991

Poletto, M., Zattera, A. J., & Santana, R. M. C. (2012b). Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12. https://doi.org/10.1016/J.BIORTECH.2012.08.133

Ramiah, M. v. (1970). Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 14(5), 1323–1337. https://doi.org/10.1002/app.1970.070140518

Roman, M. (2015). Toxicity of Cellulose Nanocrystals: A Review. Industrial Biotechnology, 11(1), 25–33. https://doi.org/10.1089/ind.2014.0024

Rosa, S. M. L., Rehman, N., de Miranda, M. I. G., Nachtigall, S. M. B., & Bica, C. I. D. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2), 1131–1138. https://doi.org/10.1016/J.CARBPOL.2011.08.084

Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003

Shakhes, J., Marandi, M. A. B., Zeinaly, F., Saraian, A., & Saghafi, T. (2011). Tobacco residuals as promising lignocellulosic materials for pulp and paper industry. BioResources, 6(4), 4481–4493. https://doi.org/10.15376/biores.6.4.4481-4493

Shen, D. K., Gu, S., & Bridgwater, A. V. (2010). The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydrate Polymers, 82(1), 39–45. https://doi.org/10.1016/J.CARBPOL.2010.04.018

Soni, B., Hassan, E. B., & Mahmoud, B. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134, 581–589. https://doi.org/10.1016/J.CARBPOL.2015.08.031

Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2011). A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4), 1097–1111. https://doi.org/10.1007/s10570-011-9533-z

TAPPI. (1997). T 204 cm-97 - Solvent extractives of wood and pulp.

TAPPI. (2002). T 222 om-02. Acid-insoluble lignin in wood and pulp.

Trache, D., Donnot, A., Khimeche, K., Benelmir, R., & Brosse, N. (2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate Polymers, 104, 223–230. https://doi.org/10.1016/J.CARBPOL.2014.01.058

Trache, D., Hussin, M. H., Haafiz, M. K. M., & Thakur, V. K. (2017). Recent progress in cellulose nanocrystals: Sources and production. Nanoscale, 9(5), 1763–1786. https://doi.org/10.1039/c6nr09494e

Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789–804. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.09.056

Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. In Frontiers in Chemistry (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fchem.2020.00392

Tuzzin, G., Godinho, M., Dettmer, A., & Zattera, A. J. (2016). Nanofibrillated cellulose from tobacco industry wastes. Carbohydrate Polymers, 148, 69–77. https://doi.org/10.1016/J.CARBPOL.2016.04.045

USP 42. (2019). The United States Pharmacopeial Convention Inc. Rockville, American Pharmaceutical Association.

Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., Hokkinen, J., Tapper, U., Lahtinen, P., Kapanen, A., Putkisto, K., Hiekkataipale, P., Eronen, P., Ruokolainen, J., & Laukkanen, A. (2011). Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 18(3), 775–786. https://doi.org/10.1007/s10570-011-9501-7

Wagner, H., & Bladt, S. (1996). Plant Drug Analysis (Second Edition). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00574-9

Wongsiriamnuay, T., & Tippayawong, N. (2010). Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresource Technology, 101(14), 5638–5644. https://doi.org/https://doi.org/10.1016/j.biortech.2010.02.037

Zanini, M., Lavoratti, A., Zimmermann, M. V., Galiotto, D., Matana, F., Baldasso, C., & Zattera, A. J. (2017). Aerogel preparation from short cellulose nanofiber of the Eucalyptus species. Journal of Cellular Plastics, 53(5). https://doi.org/10.1177/0021955X16670590

Zimmermann, M. V., Borsoi, C., Lavoratti, A., Zanini, M., Zattera, A. J., & Santana, R. M. (2016). Drying techniques applied to cellulose nanofibers. Journal of Reinforced Plastics and Composites, 35(8). https://doi.org/10.1177/0731684415626286

Downloads

Published

13/11/2021

How to Cite

GARCIA, K. R.; WEISS-ANGELI, V.; KOESTER, L. S.; SANTOS, V. dos; BRANDALISE, R. N. Tobacco stalk lignocellulosic nanofibers characterization for pharmaceutical applications. Research, Society and Development, [S. l.], v. 10, n. 14, p. e522101422261, 2021. DOI: 10.33448/rsd-v10i14.22261. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22261. Acesso em: 26 nov. 2024.

Issue

Section

Engineerings