Microalgae use in animal nutrition





Eicosapentaenoic acid; Docosahexaenoic acid; General health; Sustainability.


Looking for alternative sources in animal nutrition, microalgae began to be explored, gaining space in commercial production. The aim of this review is to present available information about the use of microalgae in animal nutrition, as well as its effect and applications. Many microalgae are important sources of polyunsaturated fatty acids (PUFA), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These PUFA is poorly synthesized by animals, so they should be included in their diet. In addition, they are a rich source of almost all of the important minerals as well as vitamins. Additionally, some microalgae generally have a high protein content and high digestibility. In this context, microalgae already available on the market, become an alternative replacing conventional ingredients. To our knowledge, the use of small amounts of microalgae biomass in the feed can benefit the physiology of the animals, improving the immune response, resistance to diseases, antiviral and antibacterial action, intestinal function, and stimulation of probiotic colonization. In general, the addition of these compounds to the diets of animals enhances their overall health and immune status, productivity, and the quality and stability of the resulting animal products. Although the use of microalgae is increasingly directed towards many types of animals: cats, dogs, ornamental fish, horses, poultry, swine, sheep, and cow, studies still need to be explored.


Abdelnour, S. A., Abd El-Hack, M. E., Arif, M., Khafaga, A. F. & Taha, A. E. (2019). The application of the microalgae Chlorella spp. as a supplement in broiler feed. World's Poultry Science Journal, 75(2), 305–318. https://doi.org/10.1017/S0043933919000047

Adarme-Vega, T C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y. & Schenk, P. M. (2012). Microalgae biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1), 96. https://doi.org/10.1186/1475-2859-11-96

Ajmone-Cat, M. A., Salvatori, M. L., Simone, R., Mancini, M., Biagioni, S., Bernardo, A. & Minghetti, L. (2012). Docosahexaenoic acid modulates inflammatory and antineurogenic functions of activated microglial cells. Journal Neuroscience Research, 90(3), 575–587. https://doi.org/10.1002/jnr.22783

Aki, T. K., Hachida, M., Yoshinaga, Y., Katai, T., Yamasaki, T., Kawamoto, S. & Ono, K. (2003). Thraustochytrid as a potential source of carotenoids. Journal of the American Oil Chemists' Society, 80(8),789-794. https://doi.org/10.1007/s11746-003-0773-2

Altomonte, I., Salari, F., Licitra, R. & Martini, M. (2018). Use of microalgae in ruminant nutrition and implications on milk quality–A review. Livestock Science, 214, 25–35. https://doi.org/10.1016/j.livsci.2018.05.006

An, B. K., Kim, K. E., Jeon, J. Y. & Lee, K. W. (2016). Effect of dried CLV vulgaris and CLV growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. Springer Plus, 5(1), 718. https://doi.org/10.1186/s40064-016-2373-4

An, S. H., Joo, S. S., Lee, H. G., Kim, Z. H., Lee, C. S. Kim, M. & Kong, C. (2020). Supplementation of Indigenous Green Microalga (Parachlorella sp.) to Pre-starter Diet for Broiler Chickens. Korean Journal of Poultry Science, 47(1), 49–59. https://doi.org/10.5536/KJPS.2020.47.1.49

Andrade, L. M., Andrade, C. J., Dias, M., Nascimento, C. A. O. & Mendes, M. A. (2018). CLV and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. Food Processing and Technology, 6(1), 00144. https://doi.org/10.15406/mojfpt.2018.06.00144

Appolinário, P. P., Derogis, P. B. M. C., Yamaguti, T. H. & Miyamoto, S. (2011). Metabolismo, oxidação e implicações biológicas do ácido docosahexaenoico em doenças neurodegenerativas. Química Nova, 34(8), 1409–1416. https://doi.org/10.1590/S0100-40422011000800021

Beauchemin, K. A., M., Kreuzer, F. O. & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48(2), 21–27. https://doi.org/10.1071/EA07199

Becker, E. W. (1994). Microalgae: Biotechnology and Microbiology. Vol. 10. Cambridge, UK: Cambridge University Press.

Becker, E. W. (2004). The nutritional value of microalgae for aquaculture. In: Richmond, A. eds Handbook of microalgae mass cultures, 380-391. CRC Press Inc. Boca Raton: Florida.

Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002

Bertoldi, F. C., Sant’anna, E. S. & Oliveira, J. L. B. (2008). Revisão: biotecnologia de microalgas. Boletim do CEPPA, 26(1), 9-20. Retrieved November 24, 2021, from https://www.researchgate.net

Boeckaert, C., Vlaeminck, B., Dijkstra, J. Issa-Zacharia, A., Van Nespen, T., Van Straalen, W. & Fievez, V. (2008). Effect of Dietary Starch or Micro Algae Supplementation on Rumen Fermentation and Milk Fatty Acid Composition of Dairy Cows. Journal Dairy Science, 91(12), 4714–4727. https://doi.org/10.3168/jds.2008-1178

Brasky, T. M., Lampe, J. W., Potter, J. D., Patterson, R. E. & White, E. (2010). Specialty supplement and breast cancer risk in the vita-min and lifestyle (VITAL) cohort. Cancer Epidemiology and Prevention Biomarkers, 19(7), 1696–1708. https://doi.org/10.1158/1055-9965.EPI-10-0318

Carrillo, S., Lopez, E., Casas, M. M., Avila, E., Castillo, R. M., Carranco, M. E. & Pérez-Gil, F. (2008). Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. Journal Applied Phycology, 20, 271–278. https://doi.org/10.1007/978-1-4020-9619-8_34

Chang, G., Luo, Z., Gu, S., Wub, Q., Chang, M. & Wang, X. (2013). Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresource Technology, 142, 255–260. https://doi.org/10.1016/j.biortech.2013.05.030

Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C. & Chang, J. S. (2017). Microalgae biorefinery: high value products perspectives. Bioresource Technology, 229, 53–62. https://doi.org/10.1016/j.biortech.2017.01.006

Choi, H., Jung, S. K., Kim, J. S Kim, K. W., Oh, K. B., Lee, P. Y. & Byun, S. J. (2017). Effects of dietary recombinant CLV supplementation on growth performance, meat quality, blood characteristics, excreta microflora, and nutrient digestibility in broilers. Poultry Science, 96(3), 710–716. https://doi.org/10.3382/ps/pew345

Christaki, E., Florou-Paneri, P. & Bonos, E. (2011). Microalgae: a novel ingredient in nutrition. International Journal of Food Sciences and Nutrition, 62(8), 794–799. https://doi.org/10.3109/09637486.2011.582460

Colla, L. M., Maccillo-Baisch, A. L. & Costa, J. A. (2008). Spirulina platensis effects of the levels of total cholesterol, HDL and triacylglycerols in rabbits fed with a hypercholesterolemic diet. Brazilian Archives of Biology and Technology, 51, 35–43.

Da Silva, G. G., de Jesus, E. F., Takiya, C. S., Del Valle, T. A., da Silva, T. H., Vendramini, T. H. A. & Rennó, F. P. (2016). Partial replacement of ground corn with algae meal in a dairy cow diet: Milk yield and composition, nutrient digestibility, and metabolic profile. Journal of Dairy Science, 99(11), 8880–8884. https://doi.org/10.3168/jds.2016-11542

De Rivera, C., Boutet, I., Zicker, C. S. & Milgram, N. W. (2005). A novel method for assessing contrast sensitivity in the beagle dog is sensitive to age and an antioxidant enriched food. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(3), 379–387. https://doi.org/10.1016/j.pnpbp.2004.12.004

Drewery, M. L., Sawyer, J. E., Pinchak, W. E. & Wickersham, T. A. (2014). Effect of increasing amounts of postextraction algal residue on straw utilization in steers. Journal of Animal Science, 92(10), 4642–4649. https://doi.org/10.2527/jas.2014-7795

El-Bahr, S., Shousha, S., Shehab, A., Khattab, W., Ahmed-Farid, O., Sabike, I. & Albosadah, K. (2020). Effect of Dietary Microalgae on Growth Performance, Profiles of Amino and Fatty Acids, Antioxidant Status, and Meat Quality of Broiler Chickens. Animals, 10(5), 761. https://doi.org/10.3390/ani10050761

Fabregas, J. & Herrero, C. (1990). The potential use of marine microalgae as source of vitamins in nutrition. Journal of Industrial Microbiology, 5(4), 259–264. https://doi.org/10.1007/BF01569683

Fievez, V., Dohme, F., Danneels, M., Raes, K. & Demeyer, D. (2003). Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Journal Animal Science and Technology, 104(1-4), 41–58. https://doi.org/10.1016/S0377-8401(02)00330-9

Franklin, S. T., Martin, K. R., Baer, R. J., Schingoeth, D. J. & Hippen, A. R. (1999). Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. Jornal of Nutrition, 129(11), 2048–2054. https://doi.org/10.1093/jn/129.11.2048

Gouveia, L., Choubert, G., Gomes, E., Rema, P. & Empis, J. (1998). Use of Chlorella vulgaris as a carotenoid source for salmonids: effect of dietary lipid content on color, digestibility and muscle retention. Aquaculture International, 6, 269–279. https://doi.org/10.1023/A:1009251714573

Gouveia, L., Choubert, G., Gomes, E., Pereira, N. & Santinha, J. (2002). Empis Colouringation of gilthead seabream, Sparus aurata (Lin 1875), using Chlorella vulgaris microalga. Aquaculture Research, 33(12), 1–7. https://doi.org/10.1046/j.1365-2109.2002.00751.x

Gouveia, L., Rema, P., Pereira, O. & Empis, J. (2003). Colouring ornamental fish (Cyprinus carpio e Carassius auratus) with microalgal biomasss. Aquaculture Nutrition, 9(2), 123–129. https://doi.org/10.1046/j.1365-2095.2003.00233.x

Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A. & Bandarra, N. M. (2008). Microalgae in novel food products. In K. Papadoupoulos, Food Chemistry Research Developments, 75–112. New York: Nova Science Publishers.

Grigorova, S., Surdjiiska, S., Banskalieva, V. & Dimitrov, G. (2006). The effect of biomass from green algae of Chlorella genus on the biochemical characteristics of table eggs. Journal of Central European Agriculture, 7(1), 111–116.

Grinstead, G. S., Tokach, M. D., Dritz, S. S, Goodband, R. D. & Nelssen, J. L. (2000). Effects of Spirulina platensis on growth performance of weanling pigs. Animal Feed Science and Technology, 83(4), 237–247. https://doi.org/10.1016/S0377-8401(99)00130-3

Hadley, K. B., Bauer, J. & Milgram, N. W. (2017). The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence. Prostaglandins, Leukotrienes and Essential Fatty Acids, 118, 10–18. https://doi.org/10.1016/j.plefa.2017.01.011

Hakin, A. R. (2012). The potential of heterotrophic microalgae (Schizochytrium sp.) as a source of DHA. Bulletin of Marine and Fisheries Postharvest and Biotechnology, 7(1), 29–38.

Heinemann, K. M., Waldron, M. K., Bigley, K. E., Lees, G. E. & Bauer, J. E. (2005). Lon- g-chain (n-3) polyunsaturated fatty acids are more efficient than alpha-linolenic acid in improving ectroretinogram responses of puppies exposed during gestation, lactation, and weaning. Journal of Nutrition, 135(8), 1960. https://doi.org/10.1093/jn/135.8.1960

Hong, W. K., RAirakhwada, D., Seo, P. S., Park, S. Y., Hur, B. K., Kim, C. H. & Seo, J. W. (2011). Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. Applied Biochemistry and Biotechnology, 164(8), 1468–1480. https://doi.org/10.1007/s12010-011-9227-x

Keegan, J. D., Currie, D., Knox, A. & Moran, C. A. (2019). Redressing the balance: Including DHA-rich Aurantiochytrium limacinum in broiler diets increases tissue omega-3 fatty acid content and lowers the n-6: n-3 ratio. British Poultry Science, 60(4), 414–422. https://doi.org/10.1080/00071668.2019.1605153

Koller, M., Alexander, M. & Gerhart, B. (2014). "Microalgae as versatile cellular factories for valued products." Algal research, 6, 52-63. https://doi.org/10.1016/j.algal.2014.09.002

Kotrbáček, V., Doubek, J. & Doucha, J. (2015). The chlorococcalean alga CLV in animal nutrition: A review. Journal of Applied Phycology, 27(6), 2173–2180. https://doi.org/10.1007/s10811-014-0516-y

Kouba, A., Sales, J., Sergejevová, M., Kozák, P. & Masojídek, J. (2013). Colour intensity in angelfish (p terophyllum scalare) as influenced by dietary microalgae addition. Journal of Applied Ichthyology, 29(1), 193–199. https://doi.org/10.1111/jai.12010

Kouřimská, L., Vondráčková, E., Fantová, M., Nový, P., Nohejlová, L. & Michnov, K. (2014). Effect of feeding with algae on fatty acid profile of goat's milk. Scientia Agricuturae Bohemica, 45(3), 162–169. https://doi.org/10.2478/sab-2014-0103

Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Simpura, I., Jaakkola, S. & Vanhatalo, A. (2017). Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Animal Feed Science and Technology, 234, 295–311. https://doi.org/10.1016/j.anifeedsci.2017.10.002

Lemahieu, C., Bruneel, C., Verhalle, R. T., Muyhaert, K., Buyse, J. & Foubert, I. (2013). Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chemistry, 141(4), 4051–4059. https://doi.org/10.1016/j.foodchem.2013.06.078

Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F. & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102(3), 771–776. https://doi.org/10.1016/j.foodchem.2006.06.022

Marriott, N. G., Garrett, J. E., Sims, M. D. & Abril, J. R. (2002). Características de desempenho e composição de ácidos graxos de suínos alimentados com dieta contendo ácido docosahexaenóico. Journal of Muscle Foods, 13(4), 265–277. https://doi.org/10.1111/j.1745-4573.2002.tb00335.x

Mason, R. (2001). CLV and Spirulina: Green supplements for balancing the body. Alternative and Complementary Therapies, 7(3), 161-165.

Mccusker, S., Buff, P. R., Yu, Z. & Fascetti, A. J. (2014). Amino acid contento f selected plant, algal and insect species: a search for alternative protein sources for use in pet foods. Journal of Nutrition Science, 3, 1–5. https://doi.org/10.1017/jns.2014.33

Miranda, M. S., Cintra, R. G., Barros, S. B. M. & Filho, J. M. (1998). Antioxidant activity of the microalga Spirulina maxima. Brazilian Journal of Medical and Biological Research, 31(8), 1075–1079. https://doi.org/10.1590/S0100-879X1998000800007

Moate, P. J., Williams, S. R. O., Grainger, C., Hannah, M. C., Ponnampalam, E. N. & Eckard, R. J. (2011). Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Animal Feed Science and Technology, 166, 254–264. https://doi.org/10.1016/j.anifeedsci.2011.04.069

Moate, P. J., Williams, S. R. O., Hannah, M. C., Eckard, R. J., Auldist, M. J., Ribaux, B. E. & Wales, W. J. (2013). Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. Journal Dairy Science, 96(5), 3177–3188. https://doi.org/10.3168/jds.2012-6168

Nagaoka, S., Shimizu, K., Kaneko, H., Shibayama, F., Morikawa, K., Kanamaru, Y. & Kato, T. (2005). A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. Journal of Nutrition, 135, 2425–2430. https://doi.org/10.1093/jn/135.10.2425

Nandeesha, M. C., Gangadhara, B., Manissery, J. K. & Venkataraman, L.V. (2001). Growth performance of two Indian major carps, catla (Catlacatla) and rohu (Labeorohita) fed diets containing different levels of Spirulina platensis. Bioresource Technology, 80(2), 117-120. https://doi.org/10.1016/S0960-8524(01)00085-2

Natrah, F., Yosoff, F. M., Shariff, M., Abas, F. & Mariana, N. S. (2007). Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. Journal of Applied Phycology, 19(6), 711–718. https://doi.org/10.1007/s10811-007-9192-5

Neto, J. M. C., Teixeira, R. G., Cavalcanti de Sá, M. J., Lima, A. E., Jacinto-Aragão, G. S., Teixeira, M. W. & de Azevedo, A. S. (2010). Farinha de algas marinhas (Lithothamnium calcareum) como suplemento mineral na cicatrização óssea de autoenxerto cortical em cães. Revista Brasileira de Saúde e Produção Animal, 11(1), 217–230.

Oh, S. T., Zheng, L., Kwon, H. J., H. J., Choo, Y. K., Lee, K. W., Kang, C. W. & An, B. K. (2015). Effects of dietary fermented CLV vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in Pekin ducks. Asian-Australasian. Journal of Animal Sciences, 28(1), 95–101. https://doi.org/10.5713/ajas.14.0473

Or-Rashid, M. M., Krame, J. K. G., Wood, M. A. & McBride, B. W. (2008). Supplemental algal meal alters the ruminal trans-18:1 fatty acid and conjugated linoleic acid composition in cattle. Journal of Animal Science, 86(1), 187-196. https://doi.org/10.2527/jas.2007-0085

Papadopoulos, B. G., Goulas, C., Apostolaki, E. & Abril, R. (2002). Effects of dietary supplements of algae, containing polyunsaturated fatty acids, on milk yield and the composition of milk products in dairy ewes. The Journal of Dairy Research, 69(3), 357–365. https://doi.org/10.1017/S0022029902005599

Palmegiano, G. B., Agradi, E., Forneris, G., Gai, F., Gasco, L., Rigamonti, E. & Zoccarato, I. (2005). Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquaculture Research, 36(2), 188–195. https://doi.org/10.1111/j.1365-2109.2005.01209.x

Paripatanamont, T., Tangtrongpairoj, J., Sailasuta, A. & Chansue, N. (1999). Effect of astaxanthin on the pigmentation of goldfish Carassius auratus. Journal of the World Aquaculture Society, 30(4), 454-460. https://doi.org/10.1111/j.1749-7345.1999.tb00993.x

Peiretti, P. G. & Meineri, G. (2009). Effects of two antioxidants on the morpho-biometrical parameters, apparent digestibility and meat composition in rabbits fed low and high fat diets. Journal of Animal and Veterinary Advances, 8(11), 2299–2304.

Peiretti, P. G. & Meineri G. (2008). Effects of diets with increasing levels of Spirulina platensis on the performance and apparent digestibility in growing rabbits. Livestock Science, 118, 173–177. https://doi.org/10.1016/j.livsci.2008.04.017

Pestana, J. M., Puerta, B., Santos, H., Madeira, M. S., Alfaia, C. M., Lopes, P. A. & Prates, J. A. M. (2020). Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits, and meat quality. Poultry Science, 99, 2519–2532. https://doi.org/10.1016/j.psj.2019.11.069

Petracci, M. Bianchi, C. & Cavani, C. (2009). Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids. Nutrients, 1(2), 111–118. https://doi.org/10.3390/nu1020111

Petrolli, T. G., Petrolli, O. J., Pereira, A. S. C., Zotti, C. A., Romani, J., Villani, R. & Zanandréa, F. M. (2019). Effects of the Dietary Supplementation with a Microalga Extract on Broiler Performance and Fatty-Acid Meat Profile. Brazilian Journal of Poultry Science, 21(3), 1–7. https://doi.org/10.1590/1806-9061-2018-0958

Pikitch, E., Boersma, P. D., Boyd, I., Conover, D., Cury, P., Essington, T. & Steneck, R. (2012). Little fish, big impact: managing a crucial link in ocean food webs. Lenfest Ocean Program, 108p. Washington, DC.

Póti, P., Pajor, F., Bodnár, Á., Penksza, K. & Köles, P. (2015). Effect of micro-alga supplementation on goat and cow milk fatty acid composition. Jornal Chileno de Pesquisa Agrícola, 75(2), 259–263. https://dx.doi.org/10.4067/S0718-58392015000200017

Pulz, O. & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648. https://doi.org/10.1007/s00253-004-1647-x

Roy, S. S. & Pal, R. (2015). Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. In Proceedings of the Zoological Society, 68(1), 1-8. https://doi.org/10.1007/s12595-013-0089-9

Santos, S. K. A., Moura, G. S., Pedreira, M. M., Prates, A. D. S. & Ferreira, A. L., Azevedo, R. C. (2015). Microalga Schizochytrium sp. em Rações para Tilápia do Nilo. Caderno de Ciências Agrárias, 7, 75–79.

Sardi, L., Martelli, G., Lambertini, L., Parisini, P. & Mordenti, A. (2006). Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livestock Science, 103(2), 95–103. https://doi.org/10.1016/j.livsci.2006.01.009

Sarker, P. K., Gamble, M. M., Kelson, S. & Kapuscinski, A. R. (2016). Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine S chizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquaculture Nutrition, 22(1), 109–119. https://doi.org/10.1111/anu.12230

Sete, M. R. C. & Figueredo, C. M. S. (2013). Periodontitis and omega-3: the role of fatty acids in the inflammatory process. Revista Hospital Universitário Pedro Ernesto, 12(1), 58–65. https://doi.org/10.12957/rhupe.2013.8804

Sheibel, S. (2016). Propriedades funcionais do ácido docosahexaenoico (DHA) para gatos. Dissertação (Mestrado em Zootecnia) Universidade Estadual de Maringá, UEM, Maringá.

Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365–379. https://doi.org/10.1016/S0753-3322(02)00253-6

Šimkus, A., Šimkienė, A., Černauskienė, J., Kvietkutė, N., Černauskas, A., Paleckaitis, M. & Kerzienė, S. (2013). The effect of blue algae Spirulina platensis on pig growth performance and carcass and meat quality. Veterinarija in Zootechnika, 61(83), 70-74.

Smith, A. D. M., Brown, C. J., Bulman, C. M., Fulton, E. A., Johnson, P., Kaplan, I. C. & Tam, J. (2011). Impacts of fishing low trophic level species on marine ecosystems. Science, 33(6046), 1147–1150. https://doi.org/10.1126/science.1209395

Soster, T., Lima, M. O. & Cella, P. S. (2018). Effect of functional oils and algae on the performance of piglets in the initial phase. Scientific Electronic Archives, 11(3), 32–35. https://doi.org/10.36560/1132018576

Souza, C. M. M., de Lima, D. C., Bastos, T. S., de Oliveira, S. G., Beirão, B. C. B. & Félix, A. P. (2019). Microalgae Schizochytrium sp. as a source of docosahexaenoic acid (DHA): Effects on diet digestibility, oxidation and palatability and on immunity and inflammatory indices in dogs. Animal Science Journal, 90(12), 1567–1574. https://doi.org/10.1111/asj.13294

Souza, C. M. M., de Lima, D. C., Bastos, T. S., Komarcheuski, A. S., de Oliveira, S. G. & Félix, A. P. (2020). The effect of supplementation of microalgae Schizochytrium sp. as a source of docosahexaenoic acid (DHA) on dogs with naturally occurring gingivitis. Archives of Veterinary Science, 25(1), 80–86. http://dx.doi.org/10.5380/avs.v25i1.62680

Sun, X., Chang, Y., Ye, Y., Ma, Z., Liang, Y. & Li, T. (2012). The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio L.). Aquaculture, 342, 62–68. https://doi.org/10.1016/j.aquaculture.2012.02.019

Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96. https://doi.org/10.1263/jbb.101.87

Stamey, J. A., Shepherd, D. M., de Veth, M. J. & Corl, B. A. (2012). Use of algae or algal oil richin n-3 fatty acids as a feed supplement for dairy cattle. Journal of Dairy Science, 95(9), 5269–5275. https://doi.org/10.3168/jds.2012-5412

Stoeckel, K., Nielsen, L. H., Fuhrmann, H. & Bachmann, L. (2011). Fatty acid patterns of dog erythrocyte membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty acids versus a diet containing added n-3 fatty acids. Acta Veterinaria Scandinavica, 53(1), 1–11. https://doi.org/10.1186/1751-0147-53-57

Stokes, R. S., Van Emon, M. L., Loy, D. D. & Hansen, S. L. (2015). Assessment of algae meal as a ruminant feedstuff: Nutrient digestibility in sheep as a model species. Journal Animal Science, 93(11), 5386–5394. https://doi.org/10.2527/jas.2015-9583

Svircev, Z. (2005). Mikroalge i cijanobakterije u biotehnologiji. Novi Sad: Prirodno matematički fakultet.

Tassinari, M., Mordenti, A. L., Testi, S. & Zotti, A. (2002). Esperienze sulla possibilita` di arricchire con la dieta la carne di coniglio di LCPUFA n-3. Progress in Nutrition, 4(2), 119–124.

Toral, P. G., Belenguer, A., Shingfield, K. J., Hervás, G., Toivonen, V. & Frutos, P. (2012). Fatty acid composition and bacterial community changes in the rumen fluid of lactating sheep fed sunflower oil plus incremental levels of marine algae. Journal of Dairy Science, 95(2), 794-806. https://doi.org/10.3168/jds.2011-4561

Tsiplakou, E., Abdullah, M. A. M., Mavrommatis, A., Chatzikonstantinou, M., Skliros, D., Sotirakoglou, K. & Zervas, G. (2018). The effect of dietary Chlorella vulgaris inclusion on goats milk chemical composition, fatty acids profile and enzymes activities related to oxidation. Journal Animal Physiology and Animal Nutrition, 102(1), 142–150. https://doi.org/10.1111/jpn.12671

Van Emon, M. L., Loy, D. D. & Hansen, S. L. (2015). Determining the preference, in vitro digestibility, in situ disappearance, and grower period performance of steers fed a novel algae meal derived from heterotrophic microalgae. Journal Animal Science, 93(6), 3121–3129. https://doi.org/10.2527/jas.2014-8654

Venckus, P., Kostkevičienė, J. & Bendikienė, V. (2017). Green algae Chlorella vulgaris cultivation in municipal wastewater and biomass composition. Journal of Environmental Engineering and Landscape Management, 25(1), 56–63. https://doi.org/10.3846/16486897.2016.1245661

Wallace, F. A., Miles, E. A. & Calder, P. C. (2003). Comparison of the effects of linseed oil and different doses of fish oil on mononuclear cell function in healthy human subjects. British Journal of Nutrition, 89(5), 679–89. https://doi.org/10.1079/BJN2002821

Wang, C., Harris, W. S., Chung, M., Lichtenstein, A. H., Balk, E. M., Kupelnick, B., Jordan, H. S. & Lau, J. (2006). n−3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. The American Journal of Clinical Nutrition, 84(1), 5–17. https://doi.org/10.1093/ajcn/84.1.5

Wu, Y. B., Li, L., Wen, Z. G., Yan, H. J., Yang, P. L., Tang, J. & Hou, S. S. (2019). Dual functions of eicosapentaenoic acid-rich microalgae: enrichment of yolk with n-3 polyunsaturated fatty acids and partial replacement for soybean meal in diet of laying hens. Poultry Science, 98(1), 350–357. https://doi.org/10.3382/ps/pey372

Zheng, L., Oh, S. T., Jeon, J. Y., Moon, B. H., Kwon, H. S., Lim, S. U. & Kang, C. W. (2012). The dietary effects of fermented CLV vulgaris (CBT) on production performance, liver lipids and intestinal microflora in laying hens. Asian-Australian Journal of Animal Science, 25(2), 261–266. https://doi.org/10.5713/ajas.2011.11273




How to Cite

SOUZA, C. M. M.; BASTOS, T. S.; SANTOS, M. C. dos . Microalgae use in animal nutrition. Research, Society and Development, [S. l.], v. 10, n. 16, p. e53101622986, 2021. DOI: 10.33448/rsd-v10i16.22986. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22986. Acesso em: 5 dec. 2023.



Agrarian and Biological Sciences