Influence of orthodontic force on immediately loaded implants

Authors

DOI:

https://doi.org/10.33448/rsd-v10i15.23022

Keywords:

Orthodontic anchorage procedures; Dental implants; Orthodontics.

Abstract

This study aimed to evaluate the influence of orthodontic force on dental implants subjected to immediate loading in adult’s human patients. For this patients with absence of mandibular posterior teeth undergoing orthodontic treatment, whose planning requires skeletal anchorage, were selected and submitted to implant installation surgery with a Morse Cone prosthetic connection and a torque of 45 N.cm. After the molding, confection and installation of the provisional prostheses in infraocclusion, Edgewise/Ricketts lower double-tube orthodontic fittings were bonded, and the mechanics of the accompanying arches for the molar verticalization were initiated, supported by the implant force ranging from 50 to 150 g, up to 6 months. Marginal bone loss and Resonance Frequency Analysis (RFA) were performed at T0 - immediately after provisional installation and T1 – 180 days after implantation. The results showed a total of 9 patients were initially selected, totaling 10 implant surgeries. However, only 5 implants presented primary stability greater than 45 N.cm. Marginal bone loss analysis showed an average of 1.21 ± 1.66 mm of bone losses, no statistically significant differences (P = 0.690) between the mesial (1.09 ± 1.6 mm) and distal (1.34 ± 1.9 mm) regions was observed. The RFA results showed a significant difference (P=0.008) in the ISQ values presented between the T0 (67.3 ± 11.7) and T1 (76.8 ± 4.95). The conclusion showed the orthodontic force does not interfere with the stability of immediate loading implants. Further studies with larger sampling and extended evaluation times are necessary to attain more consistent results.

Author Biographies

Gabriela de Oliveira Teixeira, Universidade de Araraquara

DDs, especialist and MSc in Orthodontic

Pâmela Letícia Santos, Universidade de Araraquara

Dentist surgeon

Specialist in Oral Surgeryand Facial Harmonization

Master and PhD in Oral Surgery

Daniela Oliveira Marques, Universidade de Araraquara

Dentist surgeon

Specialist in Implantology and Facial Harmonization

Master in Implantology

Rogério Margonar, Universidade de Araraquara

Dental surgeon

Master and Doctor in Periodontics

Thallita Pereira Queiroz, Universidade de Araraquara

dentist surgeon

Specialist in Implantology and Facial Harmonization

Master and PhD in Oral Surgery

Nadia Lunardi, Universidade de Araraquara

Dentist surgeon

Specialist in Orthodontics

Master and Doctor in Orthodontics

References

Adell, R., Lekholm, U., Rockler, B., & Branemark, P. I. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal Oral Surgery. 10:387-416.

Branemark, P. I., Aspegren, K., & Breine, U. (1964). Microcirculatory studies in man by high resolution vital microscopy. Angiology. 15: 329-332.

Consolaro, A., Carvalho, R. S., Franscicone, C. E., & Consolaro, M. F. (2010). Saucerização de implantes osseointegrados e o planejamento de casos clínicos ortodônticos simultâneos. Dental Press Journal Orthodontic. 15(3):19-30

Cravero, M. R., & Ibañez, J. C. (2008). Assessing Double Acid-Etched Implants Submitted to Orthodontic Forces and Used as Prosthetic Anchorages in Partially Edentulous Patients. Open Dentistry Journal. 2:30-37.

Ferrari, D. S., Piattelli, A., Iezzi, G., Faveri, M., Rodrigues, J. A., & Shibli, J. A. (2015). Effect of lateral static load on immediately restored implants: histologic and radiographic evaluation in dogs. Clinical Oral Implant Research. 26:e51–56.

Frost, H. M. (1983). A determinant of bone architecture. The minimum effective strain. Clinical Orthopedic Related Research. 175:286–292.

Frost, H. M. (1987). Bone “mass” and the “mechanostat”: a proposal. The Anatomical Record. 219(1):1-9.

Frost, H. M. (1992). Perspectives: bone's mechanical usage windows. Bone Mineral. 19(3):257-271.

Gainsforth, B. L., & Higley, L. B. (1945). A study of orthodontic anchorage possibilities in basal bone. American Journal Orthodontic Oral Surgery. 31:406-417.

Gotfredsen, K., Berglundh, T., & Lindhe, J. (2001). Bone reactions adjacent to titanium implants subjected to static load. A study in the dog (I). Clinical Oral Implant Research. 12:1–8

Gotfredsen, K., Berglundh, T., & Lindhe, J. (2001). Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clinical Oral Implant Research.12:196–201

Gotfredsen, K., Berglundh, T., & Lindhe, J. (2001). Bone reactions adjacent to titanium implants subjected to static load of different duration. Study in the dog (III) Clinical Oral Implant Research. 12:552–558.

Hsieh, Y. D., Su, C. M., Yang, Y. H., Fu, E., Chen, H. L., & Kung, S. (2008) Evaluation on the movement of end osseous titanium implants under continuous orthodontic forces: an experimental study in the dog. Clinical Oral Implant Research. 19(6):618-623.

Huang, L., Shotwell, J. K. & Wangc, H. (2005). Dental implants for orthodontic Anchorage. American Journal Orthodontic Dentofacial Orthopedic. 127:713-722.

Linkow, L. I. (1969). The endosseous blade implant and its use in orthodontics. International Journal Orthodontic. 18:149-154

Majzoub, Z., Finotti, M., Miotti, F., Giardino, R, Aldini, N. N., & Cordioli, G. (1999). Bone response to orthodontic loading of endosseous implants in the rabbit calvaria: early continuous distalizing forces. European Journal Orthodontic. 21(3):223-230.

Marins, B. R., Pramiu, S. E., Busato, M. C. A, Marchi, L. C., & Togashi, A. Y. (2016). Peri-implant evaluation of osseointegrated implants subjected to orthodontic forces: results after three years of functional loading. Dental Press Journal Orthodontic. 21(2):73-80

Melsen, B., & Lang, N. P. (2001). Biological reactions of alveolar bone to orthodontic loading of oral implants. Clinical Oral Implant Research. 12:144-152.

Nkenke, E., & Fenner, M. (2006). Indications for immediate loading of implants and implant success. Clinical Oral Implant Research. 17:19–34.

Oyonarte, R., Pilliar, R. M., Deporter, D., & Woodside, D. G. (2005). Peri-implant bone response to orthodontic loading: Part 1. A histomorphometric study of the effects of implant surface design. American Journal Orthodontic Dentofacial Orthopedic. 128:173-181

Palagi, L. M., Sabrosa, C. E., Gava, E. C. B., Baccetti, T., & Miguel, J. A. M. (2010). Long-term follow-up of dental single implants under immediate orthodontic load. Angle Orthodontic. 80:807–811

Podaropoulos, L., Veis, A. A., Trisi, P., Papadimitriou, S., Alexandridis, C., & Kalyvas, D. (2016). Bone reactions around dental implants subjected to progressive static load: an experimental study in dogs. Clinical Oral Implant Research. 27:910–917.

Rismanchian, M., Raji, S. H., Razavi, S. M., Rick, D. T., & Davoudi, A. (2017). Application of Orthodontic Immediate Force on Dental Implants: Histomorphologic and Histomorphometric Assessment. Annals Maxillofacial Surgery. 7:7-11.

Saito, S., et al. (2000). Endosseous titanium implants as anchors for mesiodistal tooth movement in the beagle dog. American Journal Orthodontic Dentofacial Orthopedic. 118(6):601-607.

Willems, G., Carels, C. E., Naert, I. E., & van Steenberghe, D. (1999). Interdisciplinary treatment planning for orthodontic-prosthetic implant anchorage in a partially edentulous patient. Clinical Oral Implant Research. 10(4):331-337.

Downloads

Published

01/12/2021

How to Cite

TEIXEIRA, G. de O.; SANTOS, P. L.; MARQUES, D. O.; MARGONAR, R.; QUEIROZ, T. P.; LUNARDI, N. Influence of orthodontic force on immediately loaded implants . Research, Society and Development, [S. l.], v. 10, n. 15, p. e483101523022, 2021. DOI: 10.33448/rsd-v10i15.23022. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23022. Acesso em: 6 jan. 2025.

Issue

Section

Health Sciences