Assessment of the fatty acid composition of different parts of zebrafish fed diets incorporated with linseed and sunflower oils

Authors

DOI:

https://doi.org/10.33448/rsd-v10i16.23177

Keywords:

Fish diet; Fatty acid; Lipid analysis; Gas chromatography; PCR.

Abstract

This study aimed to evaluate the fatty acid composition of zebrafish fed diets containing linseed oil compared to sunflower oil. First, diets supplemented with linseed and sunflower were formulated, fish were fed for 40 days, and their parts collected for analysis. Diet composition analysis, extraction and derivatization of fatty acids, gas chromatography analysis, RNA extraction and cDNA synthesis, quantitative real-time polymerase chain reaction (qRT-PCR, and statistical analyses were performed. Linseed oil exhibited an omega-3 rich lipid profile. 18:3n-3 content incorporated into the muscle tissue of fish fed linseed oil was 50% higher than that fed sunflower oil. This higher amount of 18:3n-3 favored the production of 20:5n-3 and 22:6n-3 fatty acids by synthetic pathways in the organism since these fatty acids were not initially found in the oil composition. Furthermore, in all analyzed parts of zebrafish that were fed linseed oil, concentration of 20:4n-6 were lower, while 20:5n-3 and 22:6n-3 were higher compared to the same parts fed with sunflower oil. PCR expression assay showed no significant difference, indicating that linseed oil diet was not harmful. Thus, this work evidenced that synthesis of essential fatty acids, primarily omega-3 fatty acids, was greater in zebrafish upon consumption of diets supplemented with linseed oil. 

References

Adel, S., Heydeck, D., Kuhn, H., & Ufer, C. (2016). The lipoxygenase pathway in zebrafish. Expression and characterization of zebrafish ALOX5 and comparison with its human ortholog. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1861(1), 1-11.. https://doi.org/10.1016/j.bbalip.2015.10.001

Agaba, M., Tocher, D. R., Dickson, C. A., Dick, J. R., & Teale, A. J. (2004). Zebrafish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic (20: 5n-3) and docosahexaenoic (22: 6n-3) acids. Marine Biotechnology, 6(3), 251-261. https://doi.org/10.1007/s10126-003-0029-1

AOAC, 2000. Official methods of analysis 17th Ed. Association of official analytical chemists. Arlington, VA, USA.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099

Boglino, A., Darias, M. J., Andree, K. B., Estévez, A., & Gisbert, E. (2014). The effects of dietary arachidonic acid on bone in flatfish larvae: the last but not the least of the essential fatty acids. Journal of Applied Ichthyology, 30(4), 643-651. https://doi.org/10.1111/jai.12511

Bonafé, E. G., Boeing, J. S., Matsushita, M., Claus, T., de Oliveira Santos, O., de Oliveira, C. C., ... & Visentainer, J. V. (2013). Evaluation of conjugated fatty acids incorporation in tilapia through GC–FID and EASI–MS. European Journal of Lipid Science and Technology, 115(10), 1139-1145. https://doi.org/10.1002/ejlt.201300032

Brugman, S. (2016). The zebrafish as a model to study intestinal inflammation. Developmental & Comparative Immunology, 64, 82-92. https://doi.org/10.1016/j.dci.2016.02.020

Cabo, J., Alonso, R., & Mata, P. (2012). Omega-3 fatty acids and blood pressure. British Journal of Nutrition, 107(S2), S195-S200. https://doi.org/10.1017/S0007114512001584

Carbonera, F., Montanher, P. F., Figueiredo, I. L., Bonafé, E. G., Santos Júnior, O. O., Sargi, S. C., ... & Visentainer, J. V. (2016). Lipid composition and antioxidant capacity evaluation in tilapia fillets supplemented with a blend of oils and vitamin E. Journal of the American Oil Chemists' Society, 93(9), 1255-1264. https://doi.org/10.1007/s11746-016-2869-7

Carbonera, F., Montanher, P. F., Palombini, S. V., Maruyama, S. A., Claus, T., Santos, H., ... & Visentainer, J. V. (2014). Antioxidant capacity in tilapia fillets enriched with extract of acerola fruit residue. Journal of the Brazilian Chemical Society, 25(7), 1237-1245. http://doi.org/10.5935/0103-5053.20140101

Dethlefsen, M. W., Hjermitslev, N. H., Frosch, S., & Nielsen, M. E. (2016). Effect of storage on oxidative quality and stability of extruded astaxanthin-coated fish feed pellets. Animal Feed Science and Technology, 221, 157-166. https://doi.org/10.1016/j.anifeedsci.2016.08.007

Dubois, V., Breton, S., Linder, M., Fanni, J., & Parmentier, M. (2007). Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology, 109(7), 710-732. https://doi.org/10.1002/ejlt.200700040

Figueiredo, I. L., Claus, T., Júnior, O. O. S., Almeida, V. C., Magon, T., & Visentainer, J. V. (2016). Fast derivatization of fatty acids in different meat samples for gas chromatography analysis. Journal of Chromatography A, 1456, 235-241. https://doi.org/10.1016/j.chroma.2016.06.012

Hastings, N., Agaba, M., Tocher, D. R., Leaver, M. J., Dick, J. R., Sargent, J. R., & Teale, A. J. (2001). A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proceedings of the National Academy of Sciences, 98(25), 14304-14309. https://doi.org/10.1073/pnas.251516598

Jaya-Ram, A., Kuah, M. K., Lim, P. S., Kolkovski, S., & Shu-Chien, A. C. (2008). Influence of dietary HUFA levels on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs expression in female zebrafish Danio rerio. Aquaculture, 277(3-4), 275-281. https://doi.org/10.1016/j.aquaculture.2008.02.027

Kari, G., Rodeck, U., & Dicker, A. P. (2007). Zebrafish: an emerging model system for human disease and drug discovery. Clinical Pharmacology & Therapeutics, 82(1), 70-80. https://doi.org/10.1038/sj.clpt.6100223

Li, J., Yue, Y., Li, T., Hu, X., & Zhong, H. (2009). Gas chromatography–mass spectrometric analysis of bonded long chain fatty acids in a single zebrafish egg by ultrasound-assisted one-step transmethylation and extraction. Analytica chimica acta, 650(2), 221-226. https://doi.org/10.1016/j.aca.2009.07.045

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

Lund, I., Steenfeldt, S. J., Banta, G., & Hansen, B. W. (2008). The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration, pigmentation and prostaglandin content of common sole larvae (Solea solea L.). Aquaculture, 276(1-4), 143-153. https://doi.org/10.1016/j.aquaculture.2008.01.004

Lund, I., Steenfeldt, S. J., & Hansen, B. W. (2010). Influence of dietary arachidonic acid combined with light intensity and tank colour on pigmentation of common sole (Solea solea L.) larvae. Aquaculture, 308(3-4), 159-165. https://doi.org/10.1016/j.aquaculture.2010.08.004

Mackay, I., Ford, I., Thies, F., Fielding, S., Bachoo, P., & Brittenden, J. (2012). Effect of Omega-3 fatty acid supplementation on markers of platelet and endothelial function in patients with peripheral arterial disease. Atherosclerosis, 221(2), 514-520.https://doi.org/10.1016/j.atherosclerosis.2011.12.041

Metherel, A. H., Chouinard-Watkins, R., Trépanier, M. O., Lacombe, R. S., & Bazinet, R. P. (2017). Retroconversion is a minor contributor to increases in eicosapentaenoic acid following docosahexaenoic acid feeding as determined by compound specific isotope analysis in rat liver. Nutrition & metabolism, 14(1), 1-8. https://doi.org/10.1186/s12986-017-0230-2

Brazilian Ministry of Health, 1998. Health Surveillance Secretariat; Ordinance No. 41, 14th January 1998; Official Gazette of the Federative Republic of Brazil.

Monroig, Ó., Rotllant, J., Sánchez, E., Cerdá-Reverter, J. M., & Tocher, D. R. (2009). Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish Danio rerio early embryogenesis. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1791(11), 1093-1101.https://doi.org/10.1016/j.bbalip.2009.07.002

Monroig, Ó., Guinot, D., Hontoria, F., Tocher, D. R., & Navarro, J. C. (2012). Biosynthesis of essential fatty acids in Octopus vulgaris (Cuvier, 1797): Molecular cloning, functional characterisation and tissue distribution of a fatty acyl elongase. Aquaculture, 360, 45-53. https://doi.org/10.1016/j.aquaculture.2012.07.016

Morais, S., Castanheira, F., Martinez-Rubio, L., Conceição, L. E., & Tocher, D. R. (2012). Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1821(4), 660-671. https://doi.org/10.1016/j.bbalip.2011.12.011

NRC - Nutrient requirements of warm water fishes and shellfishes. National Academy Press, Washington.1983.

Pang, S. C., Wang, H. P., Li, K. Y., Zhu, Z. Y., Kang, J. X., & Sun, Y. H. (2014). Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model. Marine biotechnology, 16(5), 580-593. https://doi.org/10.1007/s10126-014-9577-9

Perini, J. Â. D. L., Stevanato, F. B., Sargi, S. C., Visentainer, J. E. L., Dalalio, M. M. D. O., Matshushita, M., ... & Visentainer, J. V. (2010). Omega-3 and omega-6 polyunsaturated fatty acids: metabolism in mammals and immune response. Revista de Nutrição, 23(6), 1075-1086. http://doi.org/10.1590/S1415-52732010000600013

Sargi, S. C., Silva, B. C., Santos, H. M. C., Montanher, P. F., Boeing, J. S., Santos Júnior, O. O., ... & Visentainer, J. V. (2013). Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Science and Technology, 33, 541-548. http://doi.org/10.1590/S0101-20612013005000057

Siccardi III, A. J., Garris, H. W., Jones, W. T., Moseley, D. B., D'Abramo, L. R., & Watts, S. A. (2009). Growth and survival of zebrafish (Danio rerio) fed different commercial and laboratory diets. Zebrafish, 6(3), 275-280. https://doi.org/10.1089/zeb.2008.0553

Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & pharmacotherapy, 56(8), 365-379. https://doi.org/10.1016/S0753-3322(02)00253-6

Storebakken, T., Sørensen, M., Bjerkeng, B., Harris, J., Monahan, P., & Hiu, S. (2004). Stability of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, during feed processing: effects of enzymatic cell wall disruption and extrusion temperature. Aquaculture, 231(1-4), 489-500. https://doi.org/10.1016/j.aquaculture.2003.10.034

Tan, S. H., Chung, H. H., & Shu-Chien, A. C. (2010). Distinct developmental expression of two elongase family members in zebrafish. Biochemical and biophysical research communications, 393(3), 397-403. https://doi.org/10.1016/j.bbrc.2010.01.130

Tu, W. C., Cook-Johnson, R. J., James, M. J., Mühlhäusler, B. S., & Gibson, R. A. (2010). Omega-3 long chain fatty acid synthesis is regulated more by substrate levels than gene expression. Prostaglandins, Leukotrienes and Essential Fatty Acids, 83(2), 61-68. https://doi.org/10.1016/j.plefa.2010.04.001

Visentainer, J. V., Claus, T., Santos Jr, O. O., Chiavelli, L. U. R., & Maruyama, S. A. (2014). Analytical aspects of the flame ionization detection in comparison with mass spectrometry with emphasis on fatty acids and their esters (pp. 39-56). InTech. http://doi.org/10.5772/57333

Visentainer, J. V. (2012). Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Química Nova, 35, 274-279. http://doi.org/10.1590/S0100-40422012000200008

Volpe, M. G., Varricchio, E., Coccia, E., Santagata, G., Di Stasio, M., Malinconico, M., & Paolucci, M. (2012). Manufacturing pellets with different binders: Effect on water stability and feeding response in juvenile Cherax albidus. Aquaculture, 324, 104-110. https://doi.org/10.1016/j.aquaculture.2011.10.029

Wendell, S. G., Baffi, C., & Holguin, F. (2014). Fatty acids, inflammation, and asthma. Journal of Allergy and Clinical Immunology, 133(5), 1255-1264. https://doi.org/10.1016/j.jaci.2013.12.1087

Yoshizaki, G., Kiron, V., Satoh, S., & Takeuchi, T. (2005). Enhancement of EPA and DHA biosynthesis by over-expression of masu salmon Δ6-desaturase-like gene in zebrafish. Transgenic research, 14(2), 159-165. https://doi.org/ 10.1007/s11248-004-7435-7

Downloads

Published

08/12/2021

How to Cite

CRUZ, V. H. M. da .; SILVA, G. A. R. da .; CASTRO, M. C. .; PONHOZI, I. B. .; SOUZA, P. M. de .; VISENTAINER, J. V. .; SANTOS JÚNIOR, O. O. . Assessment of the fatty acid composition of different parts of zebrafish fed diets incorporated with linseed and sunflower oils . Research, Society and Development, [S. l.], v. 10, n. 16, p. e113101623177, 2021. DOI: 10.33448/rsd-v10i16.23177. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23177. Acesso em: 22 nov. 2024.

Issue

Section

Exact and Earth Sciences