Different strategies to increase the biosurfactant production of a Paenibacillus sp. isolate (BR13834)
DOI:
https://doi.org/10.33448/rsd-v10i17.24232Keywords:
DCCR; Biosurfactants; Paenibacillus sp.Abstract
Biosurfactants are metabolites produced by several microorganisms, and in recent years are attracting interest in the scientific community due to their advantages over synthetic surfactants. The present study aimed to increase the production of biosurfactants by Paenibacillus sp., optimizing the growth factors carbon source, pH, temperature, and culture time. Initially, the carbon sources glucose, lactose, olive oil, soybean oil, glycerol, and kerosene were evaluated. Then, the factors pH, Temperature, and Time were evaluated, using a factorial design to identify the factors that influence the process of biosurfactant production. Finally, the environmental factors temperature and cultivation time were evaluated using central composite rotational design (DCCR). In all trials, the isolate BR13834 belonging to the genus Paenibacillus was used. The empirical prediction model developed was found to be adequate to describe biosurfactant production concerning surface tension (R2 = 0.755). The minimum value for surface tension was 34.6 mN/m, obtained under the optimal conditions of 30°C and 24 hours of cultivation. The results showed that DCCR was suitable to identify the best conditions for the production of biosurfactant produced by Paenibacillus sp.
References
Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Shibulal, B. (2014). Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: Biointerfaces, 114, 324–333. doi: 10.1016/j.colsurfb.2013.09.022
Almeida, D. G., da Silva, R. de C. F. S., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2017). Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Frontiers in Microbiology, 8, 1–13. doi: 10.3389/fmicb.2017.00157
Amirabadi, S. S., Jahanmiri, A., Rahimpour, M. R., Nia, B. R., Darvishi, P., & Niazi, A. (2013). Investigation of Paenibacillus alvei ARN63 ability for biodemulsifier production: Medium optimization to break heavy crude oil emulsion. Colloids and Surfaces B: Biointerfaces, 109, 244–252. doi: 10.1016/j.colsurfb.2013.03.029
Bezerra, K. G. O., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2018). Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnology Progress, 34(6), 1482–1493. doi: 10.1002/btpr.2682
Bhardwaj, G., Cameotra, S. S., & Chopra, H. (2013). Biosurfactants from Fungi: A Review. Journal of Petroleum & Environmental Biotechnology, 04(06). doi: 10.4172/2157-7463.1000160
Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Babu, S. V., Senthilkumar, S. R., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99(17), 8170–8174. doi: 10.1016/j.biortech.2008.03.018
Deepika, K. V., Nagaraju, G. P., & Bramhachari, P. V. (2017). Optimization of cultural conditions for marine microbial biosurfactant production: Future prospects from untapped marine resources. In M. M. Naik & S. K. Dubey (Eds.), Marine Pollution and Microbial Remediation, 105–128. doi: 10.1007/978-981-10-1044-6_7
du Noüy, P. L. (1925). An interfacial tensiometer for universal use. The Journal of General Physiology, 7(5), 625–632. doi: 10.1085/jgp.7.5.625
Fontes, G. C., Amaral, P. F. F., Nele, M., & Coelho, M. A. Z. (2010). Factorial design to optimize biosurfactant production by yarrowia lipolytica. Journal of Biomedicine and Biotechnology, 2010, 1-8. doi: 10.1155/2010/821306
Garrido-López, Á., & Tena, M. T. (2005). Experimental design approach for the optimisation of pressurised fluid extraction of additives from polyethylene films. Journal of Chromatography A, 1099(1–2), 75–83. doi: 10.1016/j.chroma.2005.09.005
He, Z., Liu, G., Yang, X., & Liu, W. (2016). A novel surfactant, N,N-diethyl-N’-cyclohexylthiourea: Synthesis, flotation and adsorption on chalcopyrite. Journal of Industrial and Engineering Chemistry, 37, 107–114. doi: 10.1016/j.jiec.2016.03.013Jimoh, A. A., & Lin, J. (2018). Enhancement of Paenibacillus sp. D9 Lipopeptide biosurfactant production through the optimization of medium composition and its application for biodegradation of hydrophobic pollutants. Applied Biochemistry and Biotechnology, 187(3), 724–743. doi: 10.1007/s12010-018-2847-7
Joy, S., Butalia, T., Sharma, S., & Rahman, P. K. S. M. (2017). Biosurfactant producing bacteria from hydrocarbon contaminted environment. Chemical Engineering Journal, 317, 232-241. doi: 10.1016/j.cej.2017.02.054
Kiran, G. S., Thomas, T. A., Selvin, J., Sabarathnam, B., & Lipton, A. P. (2010). Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresource Technology, 101(7), 2389–2396. doi: 10.1016/j.biortech.2009.11.023
Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149–156. doi: 10.1016/S0167-7012(01)00259-7
Liang, T. W., Wu, C. C., Cheng, W. T., Chen, Y. C., Wang, C. L., Wang, I. L., & Wang, S. L. (2013). Exopolysaccharides and antimicrobial biosurfactants produced by paenibacillus macerans TKU029. Applied Biochemistry and Biotechnology, 172(2), 933–950. doi: 10.1007/s12010-013-0568-5
Montgomery, D. C. (2017). Design and analysis of experiments eighth edition. In Design (9th ed., Vol. 2). https://doi.org/10.1198/tech.2006.s372
Mukherjee, S., Das, P., & Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology, 24(11), 509–515. doi: 10.1016/j.tibtech.2006.09.005
Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., & Ghobadi, Z. (2010). Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chemical Engineering Journal, 163(3), 188–194. doi: 10.1016/j.cej.2010.06.044
Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., Soleimani, M., & Jamshidnejad, Z. (2011). Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids and Surfaces B: Biointerfaces, 82(1), 33–39. doi: 10.1016/j.colsurfb.2010.08.010
Omotayo, A. E., Egbomeade, L. O., Taiwo, O., Oyebamiji, O. O., & Ilori, M. O. (2013). Hydrocarbon degradation by free-living nitrogen-fixing bacteria. Journal of Scientific Research and Development, 14, 75–84.
Rodrigues, L., Moldes, A., Teixeira, J., & Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 28(2), 109–116. doi: 10.1016/j.bej.2005.06.001
Sahoo, P., & Das, S. K. (2011). Tribology of electroless nickel coatings - A review. Materials and Design, 32(4), 1760–1775. doi: 10.1016/j.matdes.2010.11.013
Sakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Biosurfactant from Pseudomonas species with waxes as carbon source - Their production, modeling and properties. Journal of Industrial and Engineering Chemistry, 31, 100–111. doi: 10.1016/j.jiec.2015.06.013
Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 1–31. doi: 10.3390/ijms17030401
Santos, L. F. M. dos., Coutte, F., Ravallec, R., Dhulster, P., Tournier-Couturier, L., & Jacques, P. (2016). An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresource Technology, 218, 944–952. doi: 10.1016/j.biortech.2016.07.053
Satpute, S. K., Płaza, G. A., & Banpurkar, A. G. (2017). Biosurfactants’ production from renewable natural resources: Example of innovativeand smart technology in circular bioeconomy. Management Systems in Production Engineering, 25(1), 46–54. doi: 10.1515/mspe-2017-0007
Wang, X., Huang, L., Kang, Z., Buchenauer, H., & Gao, X. (2010). Optimization of the fermentation process of actinomycete strain Hhs.015(T). Journal of Biomedicine and Biotechnology, 2010, 1-10. doi: 10.1155/2010/141876
Wang, C. L., Huang, T. H., Liang, T. W., Fang, C. Y., & Wang, S. L. (2011). Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology, 28(6), 559–565. doi: 10.1016/j.nbt.2011.03.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Elisa Maria de Oliveira; Victor Hugo Gomes Sales; Elora Dannan Corrêa Dias; Wardsson Lustrino Borges; Marcelo Silva Andrade; Tiago Marcolino de Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.