Diferentes estrategias para aumentar la producción de biosurfactantes de un aislado de Paenibacillus sp. (BR13834)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i17.24232

Palabras clave:

DCCR; Biosurfactante; Paenibacillus sp.

Resumen

Los biosurfactantes son metabolitos producidos por varios microorganismos, y en los últimos años están despertando el interés de la comunidad científica debido a sus ventajas sobre los surfactantes sintéticos. El presente estudio tuvo como objetivo aumentar la producción de biosurfactante por Paenibacillus sp., optimizando los factores de crecimiento fuente de carbono, pH, temperatura y tiempo de cultivo. Inicialmente, se evaluaron las fuentes de carbono glucosa, lactosa, aceite de oliva, aceite de soja, glicerina y parafina. A continuación, se evaluaron los factores pH, temperatura y tiempo, mediante un diseño factorial para identificar los factores que influyen en el proceso de producción de biosurfactantes. Finalmente, se evaluaron los factores ambientales temperatura y tiempo de cultivo mediante un diseño rotacional compuesto central (DCCR). En todos los ensayos se utilizó el aislado BR13834 perteneciente al género Paenibacillus. El modelo empírico de predicción desarrollado resultó adecuado para describir la producción de biosurfactantes en relación con la tensión superficial (R2 = 0,755). El valor mínimo de la tensión superficial fue de 34,6 mN/m, obtenido en las condiciones ideales de 30°C y 24 horas de cultivo. Los resultados demostraron que el DCCR era adecuado para identificar las mejores condiciones para la producción del biosurfactante producido por Paenibacillus sp.

Biografía del autor/a

Elisa Maria de Oliveira, Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá, AP, Brasil.

 Programa de pós-graduação Biodiversidade e Biotecnologia da Rede Bionorte (PPG-Bionorte)

Victor Hugo Gomes Sales, Instituto Federal do Amapá

Instituto Federal do Amapá, BR 210, km 03, Brasil Novo, 68909-398, Macapá, AP, Brasil.

Elora Dannan Corrêa Dias, Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá, AP, Brasil.

Wardsson Lustrino Borges, Embrapa Amapá, Macapá, AP; Embrapa Agroindústria Tropical, Fortaleza, CE

Embrapa Amapá, Rodovia Juscelino Kubitscheck, km 5, Universidade, CEP 68903-419, Macapá, AP, Brasil.

Embrapa Agroindústria Tropical, Rua Doutora Sara Mesquita, 2270 Pici, CEP 60511-110 Fortaleza, CE, Brasil.

Marcelo Silva Andrade, Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá-AP, Brasil.

Tiago Marcolino de Souza , Universidade do Estado do Amapá

Universidade do Estado do Amapá. Av. Presidente Vargas, 650, Central, 68900-070, Macapá-AP, Brasil.

Citas

Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Shibulal, B. (2014). Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids and Surfaces B: Biointerfaces, 114, 324–333. doi: 10.1016/j.colsurfb.2013.09.022

Almeida, D. G., da Silva, R. de C. F. S., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2017). Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Frontiers in Microbiology, 8, 1–13. doi: 10.3389/fmicb.2017.00157

Amirabadi, S. S., Jahanmiri, A., Rahimpour, M. R., Nia, B. R., Darvishi, P., & Niazi, A. (2013). Investigation of Paenibacillus alvei ARN63 ability for biodemulsifier production: Medium optimization to break heavy crude oil emulsion. Colloids and Surfaces B: Biointerfaces, 109, 244–252. doi: 10.1016/j.colsurfb.2013.03.029

Bezerra, K. G. O., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2018). Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnology Progress, 34(6), 1482–1493. doi: 10.1002/btpr.2682

Bhardwaj, G., Cameotra, S. S., & Chopra, H. (2013). Biosurfactants from Fungi: A Review. Journal of Petroleum & Environmental Biotechnology, 04(06). doi: 10.4172/2157-7463.1000160

Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Babu, S. V., Senthilkumar, S. R., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99(17), 8170–8174. doi: 10.1016/j.biortech.2008.03.018

Deepika, K. V., Nagaraju, G. P., & Bramhachari, P. V. (2017). Optimization of cultural conditions for marine microbial biosurfactant production: Future prospects from untapped marine resources. In M. M. Naik & S. K. Dubey (Eds.), Marine Pollution and Microbial Remediation, 105–128. doi: 10.1007/978-981-10-1044-6_7

du Noüy, P. L. (1925). An interfacial tensiometer for universal use. The Journal of General Physiology, 7(5), 625–632. doi: 10.1085/jgp.7.5.625

Fontes, G. C., Amaral, P. F. F., Nele, M., & Coelho, M. A. Z. (2010). Factorial design to optimize biosurfactant production by yarrowia lipolytica. Journal of Biomedicine and Biotechnology, 2010, 1-8. doi: 10.1155/2010/821306

Garrido-López, Á., & Tena, M. T. (2005). Experimental design approach for the optimisation of pressurised fluid extraction of additives from polyethylene films. Journal of Chromatography A, 1099(1–2), 75–83. doi: 10.1016/j.chroma.2005.09.005

He, Z., Liu, G., Yang, X., & Liu, W. (2016). A novel surfactant, N,N-diethyl-N’-cyclohexylthiourea: Synthesis, flotation and adsorption on chalcopyrite. Journal of Industrial and Engineering Chemistry, 37, 107–114. doi: 10.1016/j.jiec.2016.03.013Jimoh, A. A., & Lin, J. (2018). Enhancement of Paenibacillus sp. D9 Lipopeptide biosurfactant production through the optimization of medium composition and its application for biodegradation of hydrophobic pollutants. Applied Biochemistry and Biotechnology, 187(3), 724–743. doi: 10.1007/s12010-018-2847-7

Joy, S., Butalia, T., Sharma, S., & Rahman, P. K. S. M. (2017). Biosurfactant producing bacteria from hydrocarbon contaminted environment. Chemical Engineering Journal, 317, 232-241. doi: 10.1016/j.cej.2017.02.054

Kiran, G. S., Thomas, T. A., Selvin, J., Sabarathnam, B., & Lipton, A. P. (2010). Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresource Technology, 101(7), 2389–2396. doi: 10.1016/j.biortech.2009.11.023

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149–156. doi: 10.1016/S0167-7012(01)00259-7

Liang, T. W., Wu, C. C., Cheng, W. T., Chen, Y. C., Wang, C. L., Wang, I. L., & Wang, S. L. (2013). Exopolysaccharides and antimicrobial biosurfactants produced by paenibacillus macerans TKU029. Applied Biochemistry and Biotechnology, 172(2), 933–950. doi: 10.1007/s12010-013-0568-5

Montgomery, D. C. (2017). Design and analysis of experiments eighth edition. In Design (9th ed., Vol. 2). https://doi.org/10.1198/tech.2006.s372

Mukherjee, S., Das, P., & Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology, 24(11), 509–515. doi: 10.1016/j.tibtech.2006.09.005

Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., & Ghobadi, Z. (2010). Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology. Chemical Engineering Journal, 163(3), 188–194. doi: 10.1016/j.cej.2010.06.044

Najafi, A. R., Rahimpour, M. R., Jahanmiri, A. H., Roostaazad, R., Arabian, D., Soleimani, M., & Jamshidnejad, Z. (2011). Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids and Surfaces B: Biointerfaces, 82(1), 33–39. doi: 10.1016/j.colsurfb.2010.08.010

Omotayo, A. E., Egbomeade, L. O., Taiwo, O., Oyebamiji, O. O., & Ilori, M. O. (2013). Hydrocarbon degradation by free-living nitrogen-fixing bacteria. Journal of Scientific Research and Development, 14, 75–84.

Rodrigues, L., Moldes, A., Teixeira, J., & Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal, 28(2), 109–116. doi: 10.1016/j.bej.2005.06.001

Sahoo, P., & Das, S. K. (2011). Tribology of electroless nickel coatings - A review. Materials and Design, 32(4), 1760–1775. doi: 10.1016/j.matdes.2010.11.013

Sakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Biosurfactant from Pseudomonas species with waxes as carbon source - Their production, modeling and properties. Journal of Industrial and Engineering Chemistry, 31, 100–111. doi: 10.1016/j.jiec.2015.06.013

Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: Multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 1–31. doi: 10.3390/ijms17030401

Santos, L. F. M. dos., Coutte, F., Ravallec, R., Dhulster, P., Tournier-Couturier, L., & Jacques, P. (2016). An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor. Bioresource Technology, 218, 944–952. doi: 10.1016/j.biortech.2016.07.053

Satpute, S. K., Płaza, G. A., & Banpurkar, A. G. (2017). Biosurfactants’ production from renewable natural resources: Example of innovativeand smart technology in circular bioeconomy. Management Systems in Production Engineering, 25(1), 46–54. doi: 10.1515/mspe-2017-0007

Wang, X., Huang, L., Kang, Z., Buchenauer, H., & Gao, X. (2010). Optimization of the fermentation process of actinomycete strain Hhs.015(T). Journal of Biomedicine and Biotechnology, 2010, 1-10. doi: 10.1155/2010/141876

Wang, C. L., Huang, T. H., Liang, T. W., Fang, C. Y., & Wang, S. L. (2011). Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology, 28(6), 559–565. doi: 10.1016/j.nbt.2011.03.003

Publicado

20/12/2021

Cómo citar

OLIVEIRA, E. M. de; SALES, V. H. G.; DIAS, E. D. C.; BORGES, W. L.; ANDRADE, M. S. .; SOUZA , T. M. de . Diferentes estrategias para aumentar la producción de biosurfactantes de un aislado de Paenibacillus sp. (BR13834). Research, Society and Development, [S. l.], v. 10, n. 17, p. e44101724232, 2021. DOI: 10.33448/rsd-v10i17.24232. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24232. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas