IoT and Raspberry Pi application in the food industry: a systematic review
DOI:
https://doi.org/10.33448/rsd-v11i1.24270Keywords:
Industry 4.0; IoT; Raspberry Pi.Abstract
The Industry 4.0 technologies are in ascension in the worldwide market, in Brazil still needs to be explored. It was made a Systematic Review to measure the application of IoT in the food industry. Some platforms were used to select works, applying the string “IoT AND Raspberry Pi AND Cheese”. It was possible to evidence the majority of IoT applications in the food industry, focus on the control of temperature, humidity, color, traceability of productive chain, and enlargement of sustainability in the food industry. The most difficulties faced in the conventional application of IoT are related to the high cost of proprietary arquitectures, qualified manpower and obstacles of data security implementation. There are alternatives that aim to reduce the costs of implementation, like the utilization of Raspberry Pi. The food industry presents potential application of technologies that aim for the quality of products, being an excellent opportunity.
References
ABIA. (2020). Indústria de alimentos cresce 6,7% em 2019. ABIA - Associação Brasileira Da Indústria de Alimentos. https://abia.org.br/releases/industria-de-alimentos-cresce-67-em-2019
Alfian, G., Syafrudin, M., Farooq, U., Ma’arif, M. R., Syaekhoni, M. A., Fitriyani, N. L., Lee, J., & Rhee, J. (2020). Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 110, 107016. https://doi.org/10.1016/j.foodcont.2019.107016
Alonso, R. S., Sittón-Candanedo, I., García, Ó., Prieto, J., & Rodríguez-González, S. (2020). An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Networks, 98, 102047. https://doi.org/10.1016/j.adhoc.2019.102047
Baralla, G., Pinna, A., Tonelli, R., Marchesi, M., & Ibba, S. (2020). Ensuring transparency and traceability of food local products: A blockchain application to a Smart Tourism Region. Concurrency Computation, 33(1), 1–18. https://doi.org/10.1002/cpe.5857
Barros, G. S. de C. (2020). China-Brazil partnership on agriculture and food security. In P. G. and S. H. G. de M. Marcos Sawaya Jank (Ed.), China-Brazil partnership on agriculture and food security. Universidade de São Paulo. Escola Superior de Agricultura “Luiz de Queiroz.” https://doi.org/10.11606/9786587391007
Bouzembrak, Y., Klüche, M., Gavai, A., & Marvin, H. J. P. (2019). Internet of Things in food safety: Literature review and a bibliometric analysis. In Trends in Food Science and Technology (Vol. 94, pp. 54–64). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2019.11.002
Duong, L. N. K., Al-Fadhli, M., Jagtap, S., Bader, F., Martindale, W., Swainson, M., & Paoli, A. (2020). A review of robotics and autonomous systems in the food industry: From the supply chains perspective. In Trends in Food Science and Technology (Vol. 106, pp. 355–364). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.10.028
Floarea, A. D., & Sgârciu, V. (2016, February 21). Smart refrigerator : A next generation refrigerator connected to the IoT. Proceedings of the 8th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2016. https://doi.org/10.1109/ECAI.2016.7861170
Gupta, K., & Rakesh, N. (2018). IoT-based solution for food adulteration. Smart Innovation, Systems and Technologies, 79, 9–18. https://doi.org/10.1007/978-981-10-5828-8_2
Herrero, A. C., Martinez, F. J., Garrido, P., Sanguesa, J. A., & Calafate, C. T. (2020). An interference-resilient IIoT solution for measuring the effectiveness of industrial processes. IECON Proceedings (Industrial Electronics Conference), 2020-Octob, 2155–2160. https://doi.org/10.1109/IECON43393.2020.9254454
Jagtap, S., Garcia-Garcia, G., & Rahimifard, S. (2021). Optimisation of the resource efficiency of food manufacturing via the Internet of Things. Computers in Industry, 127, 103397. https://doi.org/10.1016/j.compind.2021.103397
Jain, A., Pradhan, B. K., Mahapatra, P., Ray, S. S., Chakravarty, S., & Pal, K. (2020). Development of a low-cost food color monitoring system. Color Research and Application, 46(2), 430–445. https://doi.org/10.1002/col.22577
Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471
lawal, K., & Rafsanjani, H. nabizadeh; (2021). Trends, benefits, risks, and challenges of IoT implementation in residential and commercial buildings.
Mattas, K., & Tsakiridou, E. (2010). Shedding fresh light on food industry’s role: the recession’s aftermath. In Trends in Food Science and Technology (Vol. 21, Issue 4, pp. 212–216). Elsevier. https://doi.org/10.1016/j.tifs.2009.12.005
Mededjel, M., Belalem, G., & Neki, A. (2017). Towards a traceability system based on cloud and fog computing. Multiagent and Grid Systems, 13(1), 47–68. https://doi.org/10.3233/MGS-170261
Misiou, O., & Koutsoumanis, K. (2021). Climate change and its implications for food safety and spoilage. In Trends in Food Science and Technology. Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.03.031
Pal, A., & Kant, K. (2020). Smart sensing, communication, and control in perishable food supply chain. ACM Transactions on Sensor Networks, 16(1), 1–41. https://doi.org/10.1145/3360726
Paladino, Fissore, & Neviani. (2019). A Low-Cost Monitoring System and Operating Database for Quality Control in Small Food Processing Industry. Journal of Sensor and Actuator Networks, 8(4), 52. https://doi.org/10.3390/jsan8040052
Prasanth, P., Viswan, G., & Bennaceur, K. (2020). Development of a low-cost portable spectrophotometer for milk quality analysis. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.327
Rahim, M. A., Rahman, M. A., Rahman, M. M., Asyhari, A. T., Bhuiyan, M. Z. A., & Ramasamy, D. (2021). Evolution of IoT-enabled connectivity and applications in automotive industry: A review. In Vehicular Communications (Vol. 27, p. 100285). Elsevier Inc. https://doi.org/10.1016/j.vehcom.2020.100285
Sacomano, J. B. ., Gonçalves, R. F. ., Bonilla, S. H. ., Silva, M. T. da;, & Sátyro, W. C. (2018). Indústria 4.0: conceito e fundamentos (1a ed. São).
Safkhani, M., Rostampour, S., Bendavid, Y., & Bagheri, N. (2020). IoT in medical & pharmaceutical: Designing lightweight RFID security protocols for ensuring supply chain integrity. Computer Networks, 181, 107558. https://doi.org/10.1016/j.comnet.2020.107558
Sakurai, R., & Zuchi, J. D. (2018). As revoluções industriais até a industria 4.0. Revista Interface Tecnológica, 15(2), 480–491. https://doi.org/10.31510/infa.v15i2.386
Teixeira, N., Pires, M. C., Ferreira, P., Carvalho, G. P., Santos, R., Rodrigues, F. M., Dias, J., Martins, J. C., & Caeiro, J. J. (2020). The economic impact of a new type of ripening chamber in traditional cheese manufacturing. Sustainability (Switzerland), 12(16), 1–8. https://doi.org/10.3390/su12166682
Venkata Lakshmi, S., Janet, J., Kavitha Rani, P., Sujatha, K., Satyamoorthy, K., & Marichamy, S. (2021). Role and applications of IoT in materials and manufacturing industries – Review. Materials Today: Proceedings, 45, 2925–2928. https://doi.org/10.1016/j.matpr.2020.11.939
Vyas, S., Shukla, V., & Doshi, N. (2019). FMD and mastitis disease detection in cows using internet of thingh(iot). Procedia Computer Science, 160, 728–733. https://doi.org/10.1016/j.procs.2019.11.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Creciana Maria Endres; Crivian Pelisser; Doglas André Finco; Maristela Schleicher Silveira; Valério Junior Piana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.