Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24506

Keywords:

Systematic mapping; Shear strength; Artificial intelligence.

Abstract

The investigation of soils shear strength is necessary in many Geotechnical Engineering applications, e.g. foundations, slope stability and retaining walls design. It is usually conducted by means of field and/or laboratory standard tests. In both cases, they are time-consuming and require specialized personnel to be performed. Several studies are found in the literature in which artificial intelligence tools are used as an alternative to those tests. This paper presents a systematic mapping review on this subject, in which algorithms types and geotechnical parameters needed to estimate soils shear strength are identified, based on data extracted from the literature. It was possible to list 17 techniques applied to different soil types. The results from these studies have been in good agreement with data from real laboratory and/or field tests. This demonstrates the potential of application of artificial intelligence to estimate soils shear strength.

Author Biographies

Fagner Alexandre Nunes de França, Universidade Federal do Rio Grande do Norte

Professor

Department of Civil Engineering

Osvaldo de Freitas Neto, Universidade Federal do Rio Grande do Norte

Professor

Department of Civil Engineering

References

American Association of State and Highway Trasportation Officials (2008). AASHTO T 236-08: Standard Method of Test for Direct Shear Test of Soils Under Consolidated Drained Conditions. Washington, DC.

American Society for Testing and Materials (2020a). ASTM D 3080-11: Standard Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. Filadélfia: ASTM International.

American Society for Testing and Materials (2015). ASTM D 2850-15: Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. Filadélfia: ASTM International.

American Society for Testing and Materials (2020b). ASTM D 7181-20: Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. Filadélfia: ASTM International.

American Society for Testing and Materials (2020c). ASTM D 4767-20: Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. Filadélfia: ASTM International.

British Standards Institution (1990). BS 1377-7: Methods of test for Soils for civil engineering purposes – Part 7: Shear strength tests (totals stress). London: Britsh Standards Institution.

Basheer, I. A. & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal Of Microbiological Methods, [s.l.], 43(1), 3-31.

Bui, D. T., Hoang, N. & Nhu, V. (2018). A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Engineering With Computers, [s.l.], 1-11.

CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Portal de Periódicos Capes. Brasil. Recuperado de http://www.periodicos.capes.gov.br/.

Chenari, R. J., Tizpa, P., Rad, M. R. G., Machado, S. L. & Fard, M. K. (2014). The use of index parameters to predict soil geotechnical properties. Arabian Journal Of Geosciences, [s.l.], 8(7), 4907-4919.

Das, S. K. (2013) Artificial Neural Networks in Geotechnical Engineering: Modeling and Application Issues: Metaheuristics in Water. Geotechnical And Transport Engineering, Londres, p.231-270.

Das, S. K. & Bashudhar, P. K. (2008). Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, [s.l.], 100(3-4), 142-145.

Eiben, A. E. & Smith, J. (2015). From evolutionary computation to the evolution of things. Nature, [s.l.], 521(7553), 476-48.

Fatehnia, M. & Amirinia, G. (2018). A review of Genetic Programming and Artificial Neural Network applications in pile foundations. International Journal Of Geo-engineering, [s.l.], 9(1), 1-20.

Fredlund, D. G. & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. New York: John Wiley & Sons, Inc, 507 p.

Garven, E. A. (2009). Review of the empirical equations for predicting the shear strength of unsaturated soils. Tese de Doutorado Curso de Engenharia Civil, Faculdade de Engenharia, Universidade de Otawa, Otawa.

Gerscovich, D M. S. (2010). Resistência ao Cisalhamento. Rio de Janeiro: Feuerj. Recuperado de http://www.eng.uerj.br/~denise/pdf/resistenciacisalhamento.pdf.

Goktepe, A. B., Altun, S., Altintas, G. & Tan, O. (2008). Shear strength estimation of plastic clays with statistical and neural approaches. Building And Environment, [s.l.], 43(5), 849-860.

Holanda, M. J. O., Ferreira, S. R. M., Amorim, S. F., Borges, J. J. S. & Silva, L. F. (2021). Identification of expansive and collapsible soils in northeastern Brazil from Artificial Neural Networks generated in Pernambuco. Research, Society and Development [s.1.], 10(15), e110101522541. DOI: 10.33448/rsd-v10i15.22541

Iyeke, S. D., Eze, E. O., Ehiorobo, J. O. & Osuji, S.O. (2016). Estimation Of Shear Strength Parameters Of Lateritic Soils Using Artificial Neural Network. Nigerian Journal Of Technology, [s.l.], 35(2), 260-269.

Jokar, M. H. & Mirasi, S. (2017). Using adaptive neuro-fuzzy inference system for modeling unsaturated soils shear strength. Soft Computing, [s.l.], 22(13), 4493-4510.

Kanungo, D. P., Sharma, S. & Pain, A. (2014). Artificial Neural Network (ANN) and Regression Tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters. Frontiers Of Earth Science, [s.l.], 8(3), 439-456.

Kayadelen, C., Gunaydin, O., Fener, M., Demir, A. & Ozvan, A. (2009). Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Systems With Applications, [s.l.], 36(9), 11814-11826.

Khan, S.Z, Suman, S., Pavani, M. & Das, S. K. (2016). Prediction of the residual strength of clay using functional networks. Geoscience Frontiers, [s.l.], 7(1), 67-74.

Khanlari, G.R., Heidari, M., Momeni, A. A. & Abdilor, Y. (2012). Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Engineering Geology, [s.l.], 131-132, 11-18.

Kiran, S. & Lal, B. (2015). ANN based Prediction of Shear Strength of Soil from their index properties. International Journal of Earth Sciences and Engineering, [s.l.].

Kiran, S., LAL, B. & Tripathy, S.S. (2016). Shear Strength Prediction of Soil based on Probabilistic Neural Network. Indian Journal Of Science And Technology, [s.l.], 9(41).

Kitchenham, B. & Charters., S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report. Durham: EBSE.

Kohavi, R. & Provost, F. (1998). Glossary of Terms. Machine Learning, Boston, 30, 271-274.

Leroueil, S. (2001). Natural slopes and cuts: movement and failure mechanisms. Géotechnique, [s.l.], 51(3), 197-243.

Lu, P., Chen, S. & Zheng, Y. (2012). Artificial Intelligence in Civil Engineering. Mathematical Problems In Engineering, [s.l.], 2012, 1-22.

Mollahasani, A., Alavi, A. H., Gandomi, A. H. & Rashed, A. (2011). Nonlinear neural-based modeling of soil cohesion intercept. Ksce Journal Of Civil Engineering, [s.l.], 15(5), 831-840.

Mousavi, S. M., Alavi, A. H., Gandomi, A. H. & Arab Esmaeili, M. (2011). Formulation of soil angle of shearing resistance using a hybrid GP and OLS method. Engineering With Computers, [s.l.], 29(1), 37-53.

Mousavi, S. M., Alavi, A. H., Gandomi, A. H. & Mollahasani, A. (2011). Nonlinear genetic-based simulation of soil shear strength parameters. Journal Of Earth System Science, [s.l.], 120(6), 1001-1022.

Pessoa, A. D., Sousa, G. C. L., Araujo, R. C. & Anjos, G. J. M. (2021). Artificial neural network model for predicting load capacity of driven piles. Research, Society and Development, [s.1.], 10(1), e12210111526. DOI: 10.33448/rsd-v10i1.11526

Petersen, K., Vakkalanka, S. & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information And Software Technology, [s.l.], 64, 1-18.

Pham, B. T., Son, L. H., Hoang, T.A., Nguyen, D. M. & Bui, D, T. (2018). Prediction of shear strength of soft soil using machine learning methods. Catena, [s.l.], 166, 181-191.

Pinto, C. de S. (2006). Curso Básico de Mecânica dos Solos. 3. ed. São Paulo: Oficina de Textos.

Poole, D., Macworth, A. & Goebel, R. (1998). Computational intelligence: A logical approach. Nova York: Oxford University Press.

Sezer, A. (2011). Simple models for the estimation of shearing resistance angle of uniform sands. Neural Computing And Applications, [s.l.], 22(1), 111-123.

Shahin, M. A., Jaksa, M. B. & Maier, H. R. (2009). Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. Advances In Artificial Neural Systems, [s.l.], 2009, 1-9.

Terzaghi, K. & Peck, R. B. (1948). Soil Mechanics in Engineering Practice. 3. ed. Nova York: John Wiley & Sons Inc.

Tizpa, P., Chenari, R. J. & Fard, M. K. & Machado, S. L. (2014). ANN prediction of some geotechnical properties of soil from their index parameters. Arabian Journal Of Geosciences, [s.l.], 8(5), 2911-2920.

Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E. & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, [s.l.], 33(3), 379-392.

Published

06/01/2022

How to Cite

CARVALHO, M. G. .; BARRETO, E. M. do R.; FERREIRA, J. A. da C.; FRANÇA, F. A. N. de; FREITAS NETO, O. de. Applications of artificial intelligence in determining soil shear strength parameters: a systematic literature mapping. Research, Society and Development, [S. l.], v. 11, n. 1, p. e27711124506, 2022. DOI: 10.33448/rsd-v11i1.24506. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24506. Acesso em: 5 nov. 2024.

Issue

Section

Engineerings