Potential agrifood application of seriguela (Spondias purpurea L.) residues extract and nanoZnO as antimicrobial, antipathogenic and antivirulence agents

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.25033

Keywords:

Vegetal source bioactives; Nanoparticles; Antimicrobial activity; Anti-pathogenicity; Antivirulence; Secretion system type three; Quorum sensing.

Abstract

The impact of phytopathogenic microorganisms in several crops causes significant losses in agrifood industry, spoilage throughout food chain and storage. Nanoparticles and plant extracts have been highlighted by their antimicrobial properties applied in food packaging, agriculture, drug delivery systems and other medical approaches. Over the past few years, this group have studied the application of ZnO nanoparticles and agroindustrial wastes in edible food coatings/films. This study aimed to evaluate active characteristics from the extract of seriguela processing wastes and nanoZnO regarding to their inhibitory activity against bacterial pathogenicity and virulence systems TTSS (Type Three Secretion System) and QS (Quorum Sensing) for Pseudomonas savastanoi. Also, antibacterial action (inhibition area) against species of Curtobacterium, Clavibacter, E. coli, Xanthomonas and Serratia, and antifungal against Botrytis cinerea (reduction in colony size). The 60% extract inhibited the activation of QS and TTSS system in 20.26% and 13.54%, respectively; while nanoZnO at 3% reduced 46.77% QS and increased 302.88% TTSS. Extract without dilution inhibited the growth of Clavibacter michiganensis pv michiganensis (Gram-positive) and Xanthomonas phaseoli (Gram-negative), inhibitory zone of 94.25 mm2 and 452.39 mm2 respectively. The latter also being inhibited by nanoZnO 1 and 2% (138.23 mm2) and 3% (275.67 mm2). Pure extract inhibited 17.38% growth of fungal colony and nanoZnO (1 and 3%) in 33.08%. Finally, the active agents studied showed to be promising in the prevention of phytopathogenic diseases and consequently economic losses, food films/coatings and the extract as a biopesticide, reducing the environmental impact.

References

Akbar, A., & Anal, A. K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control, 38(1), 88–95. https://doi.org/10.1016/j.foodcont.2013.09.065

Alkan, D., & Yemenicioğlu, A. (2016). Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids, 55, 1–10. https://doi.org/10.1016/j.foodhyd.2015.10.025

Andrade, R. A. M. de S., Maciel, M. I. S., Santos, A. M. P., & Melo, E. de A. (2015). Optimization of the extraction process of polyphenols from cashew apple agro-industrial residues. Food Science and Technology, 35(2), 354–360. https://doi.org/10.1590/1678-457X.6585

Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A. de, & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.125566

Arulmozhi, P., Vijayakumar, S., Praseetha, P. K., & Jayanthi, S. (2019). Extraction methods and computational approaches for evaluation of antimicrobial compounds from Capparis zeylanica L. Analytical Biochemistry, 572(December 2018), 33–44. https://doi.org/10.1016/j.ab.2019.02.006

Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria-"A Battle of the Titans". Frontiers in Microbiology, 9(JUL), 1–26. https://doi.org/10.3389/fmicb.2018.01441

Bataglion, G. A., Da Silva, F. M. A., Eberlin, M. N., & Koolen, H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chemistry, 180, 280–287. https://doi.org/10.1016/j.foodchem.2015.02.059

Biancalani, C., Cerboneschi, M., Tadini-Buoninsegni, F., Campo, M., Scardigli, A., Romani, A., & Tegli, S. (2016). Global analysis of type three secretion system and quorum sensing inhibition of pseudomonas savastanoi by polyphenols extracts from vegetable residues. PLoS ONE, 11(9), 1–21. https://doi.org/10.1371/journal.pone.0163357

Chart, H., Smith, H. R., La Ragione, R. M., & Woodward, M. J. (2000). An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. Journal of Applied Microbiology, 89(6), 1048–1058. https://doi.org/10.1046/j.1365-2672.2000.01211.x

Chen, Y., Yin, Y., & Pathology, P. (2007). e - X tra * Curtobacterium flaccumfaciens pv . beticola , A New Pathovar. Plant Disease, December 2006, 677–684.

Dahech, I., Farah, W., Trigui, M., Hssouna, A. Ben, Belghith, H., Belghith, K. S., & Abdallah, F. Ben. (2013). Antioxidant and antimicrobial activities of Lycium shawii fruits extract. International Journal of Biological Macromolecules, 60(September 2009), 328–333. https://doi.org/10.1016/j.ijbiomac.2013.05.020

Dannenberg, G. da S., Funck, G. D., Silva, W. P. da, & Fiorentini, Â. M. (2019). Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control, 95(April 2018), 115–120. https://doi.org/10.1016/j.foodcont.2018.07.034

de León, L., Siverio, F., López, M. M., & Rodríguez, A. (2008). Comparative efficiency of chemical compounds for in vitro and in vivo activity against Clavibacter michiganensis subsp. michiganensis, the causal agent of tomato bacterial canker. Crop Protection, 27(9), 1277–1283. https://doi.org/10.1016/j.cropro.2008.04.004

Del Monte, D., De Martino, L., Marandino, A., Fratianni, F., Nazzaro, F., & De Feo, V. (2015). Phenolic content, antimicrobial and antioxidant activities of Hypericum perfoliatum L. Industrial Crops and Products, 74, 342–347. https://doi.org/10.1016/j.indcrop.2015.04.036

Devi, K. A., Pandey, P., & Sharma, G. D. (2016). Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI Journal of Biosciences, 23(4), 173–180. https://doi.org/10.1016/j.hjb.2016.12.006

Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2013). Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals, 26(6), 913–924. https://doi.org/10.1007/s10534-013-9667-6

Du, W. X., Olsen, C. W., Avena-Bustillos, R. J., Friedman, M., & McHugh, T. H. (2011). Physical and Antibacterial Properties of Edible Films Formulated with Apple Skin Polyphenols. Journal of Food Science, 76(2), M149–M155. https://doi.org/10.1111/j.1750-3841.2010.02012.x

Duffy, L. L., Osmond-McLeod, M. J., Judy, J., & King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 92, 293–300. https://doi.org/10.1016/j.foodcont.2018.05.008

Dutra, R. L. T., Dantas, A. M., Marques, D. de A., Batista, J. D. F., Meireles, B. R. L. de A., de Magalhães Cordeiro, Â. M. T., Magnani, M., & Borges, G. da S. C. (2017). Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Research International, 100(May), 650–657. https://doi.org/10.1016/j.foodres.2017.07.047

Engels, C., Gräter, D., Esquivel, P., Jiménez, V. M., Gänzle, M. G., & Schieber, A. (2012). Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Research International, 46(2), 557–562. https://doi.org/10.1016/j.foodres.2011.04.003

Esmailzadeh, H., Sangpour, P., Shahraz, F., Hejazi, J., & Khaksar, R. (2016). Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Materials Science and Engineering C, 58, 1058–1063. https://doi.org/10.1016/j.msec.2015.09.078

García-Lara, B., Saucedo-Mora, M. A., Roldán-Sánchez, J. A., Pérez-Eretza, B., Ramasamy, M., Lee, J., Coria-Jimenez, R., Tapia, M., Varela-Guerrero, V., & García-Contreras, R. (2015). Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61(3), 299–305. https://doi.org/10.1111/lam.12456

Gutiérrez-Barranquero, J. A., Reen, F. J., McCarthy, R. R., & O’Gara, F. (2015). Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens. Applied Microbiology and Biotechnology, 99(7), 3303–3316. https://doi.org/10.1007/s00253-015-6436-1

Gutiérrez-Pacheco, M. M., Bernal-Mercado, A. T., Vázquez-Armenta, F. J., Mart ínez-Tellez, M. A., González-Aguilar, G. A., Lizardi-Mendoza, J., Madera-Santana, T. J., Nazzaro, F., & Ayala-Zavala, J. F. (2019). Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiological and Molecular Plant Pathology, 106(February), 281–291. https://doi.org/10.1016/j.pmpp.2019.04.002

Haas, I. C. da S., Toaldo, I. M., Burin, V. M., & Bordignon-Luiz, M. T. (2018). Extraction optimization for polyphenolic profiling and bioactive enrichment of extractives of non-pomace residue from grape processing. Industrial Crops and Products, 112(September 2017), 593–601. https://doi.org/10.1016/j.indcrop.2017.12.058

Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003

Hiery, E., Adam, S., Reid, S., Hofmann, J., Sonnewald, S., & Burkovski, A. (2013). Genome-wide transcriptome analysis of Clavibacter michiganensis subsp. michiganensis grown in xylem mimicking medium. Journal of Biotechnology, 168(4), 348–354. https://doi.org/10.1016/j.jbiotec.2013.09.006

Huang, H. C., Erickson, R. S., & Hsieh, T. F. (2007). Control of bacterial wilt of bean (Curtobacterium flaccumfaciens pv. flaccumfaciens) by seed treatment with Rhizobium leguminosarum. Crop Protection, 26(7), 1055–1061. https://doi.org/10.1016/j.cropro.2006.09.018

Joshi, J. R., Burdman, S., Lipsky, A., Yariv, S., & Yedidia, I. (2016). Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P.carotovorum ssp. brasiliense via quorum sensing regulation. Molecular Plant Pathology, 17(4), 487–500. https://doi.org/10.1111/mpp.12295

Kanmani, P., & Rhim, J. W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106(1), 190–199. https://doi.org/10.1016/j.carbpol.2014.02.007

Kannan, K., Nivas, D., Kannan, V., & Bastas, K. (2015). Agro-Traditional Practices of Plant Pathogens Control. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria (Issue November 2017). https://doi.org/10.1201/b18892-6

Khaldi, R. El, Daami-Remadi, M., Hamada, W., Somai, L., & Cherif, M. (2015). The Potential of Serratia marcescens: An Indigenous Strain Isolated from Date Palm Compost as Biocontrol Agent of Rhizoctonia solani on Potato. Journal of Plant Pathology & Microbiology, s3. https://doi.org/10.4172/2157-7471.1000s3-006

Khokhani, D., Zhang, C., Li, Y., Wang, Q., Zeng, Q., Yamazaki, A., Hutchins, W., Zhou, S. S., Chen, X., & Yang, C. H. (2013). Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, erwinia amylovora. Applied and Environmental Microbiology, 79(18), 5424–5436. https://doi.org/10.1128/AEM.00845-13

Kostylev, M., Otwell, A. E., Richardson, R. E., & Suzuki, Y. (2015). Cloning should be simple: Escherichia coli DH5á-mediated assembly of multiple DNA fragments with short end homologies. PLoS ONE, 10(9), 1–7. https://doi.org/10.1371/journal.pone.0137466

Ma, D., Ji, D., Zhang, Z., Li, B., Qin, G., Xu, Y., Chen, T., & Tian, S. (2019). Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biology and Technology, 150(August 2018), 158–165. https://doi.org/10.1016/j.postharvbio.2019.01.005

Martins, P. M. M., Merfa, M. V., Takita, M. A., & De Souza, A. A. (2018). Persistence in phytopathogenic bacteria: Do we know enough? Frontiers in Microbiology, 9(MAY), 1–14. https://doi.org/10.3389/fmicb.2018.01099

Nafchi, A. M., Nassiri, R., Sheibani, S., Ariffin, F., & Karim, A. A. (2013). Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydrate Polymers, 96(1), 233–239. https://doi.org/10.1016/j.carbpol.2013.03.055

Nandhini, M., Rajini, S. B., Udayashankar, A. C., Niranjana, S. R., Lund, O. S., Shetty, H. S., & Prakash, H. S. (2019). Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protection, 121(March), 103–112. https://doi.org/10.1016/j.cropro.2019.03.015

Nayantara, & Kaur, P. (2018). Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review. Biotechnology Research and Innovation, 2(1), 63–73. https://doi.org/10.1016/j.biori.2018.09.003

Ombiro, G. S. ombe, Sawai, T., Noutoshi, Y., Nishina, Y., Matsui, H., Yamamoto, M., Toyoda, K., & Ichinose, Y. (2018). Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis. Microbiological Research, 215(April), 29–35. https://doi.org/10.1016/j.micres.2018.06.005

Osdaghi, E., Taghavi, S. M., Fazliarab, A., Elahifard, E., & Lamichhane, J. R. (2015). Characterization, geographic distribution and host range of Curtobacterium flaccumfaciens: An emerging bacterial pathogen in Iran. Crop Protection, 78, 185–192. https://doi.org/10.1016/j.cropro.2015.09.015

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). ). Metodologia da pesquisa científica. [free e-book]. 1. ed. – Santa Maria, RS : Ed. UAB / NTE / UFSM. ISBN 978-85-8341-204-5

Pina-Pérez, M. C., & Ferrús Pérez, M. A. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A review. Trends in Food Science and Technology, 72(November 2017), 114–124. https://doi.org/10.1016/j.tifs.2017.12.007

Portugal Zegarra, M. del C. C., Santos, A. M. P., Silva, A. M. A. D., & Melo, E. de A. (2018). Chitosan films incorporated with antioxidant extract of acerola agroindustrial residue applied in chicken thigh. Journal of Food Processing and Preservation, 42(4), 1–12. https://doi.org/10.1111/jfpp.13578

Poveda, J. M., Loarce, L., Alarcón, M., Díaz-Maroto, M. C., & Alañón, M. E. (2018). Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Industrial Crops and Products, 112(October 2017), 617–625. https://doi.org/10.1016/j.indcrop.2017.12.063

Queiroz, P. S., Barboza, N. R., Cordeiro, M. M., Leão, V. A., & Guerra-Sá, R. (2018). Rich growth medium promotes an increased on Mn(II) removal and manganese oxide production by Serratia marcescens strains isolates from wastewater. Biochemical Engineering Journal, 140(September), 148–156. https://doi.org/10.1016/j.bej.2018.09.018

Rahman, H. S., Othman, H. H., Hammadi, N. I., Yeap, S. K., Amin, K. M., Samad, N. A., & Alitheen, N. B. (2020). Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. In International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S227805

Santos, Andrelina M.P., & Santos, E. J. P. (2012). Optimization of nanostructured ZnO-particle fabrication route with different alcohols and varying sodium hydroxide concentration. ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, June, 24–28.

Santos, Andrelina Maria Pinheiro, Demetrio, A. A., Santos, M. M. dos, & Melo, E. de A. (2019). CHITOSAN/NANOZNO EDIBLE COATINGS: PREPARATION AND ACTIVE FOOD PACKING APPLICATION. In A Produção do Conhecimento nas Ciências da Saúde 2. https://doi.org/10.22533/at.ed.99919300420

Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519–537. https://doi.org/10.1007/s12571-012-0200-5

Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271. https://doi.org/10.1016/j.foodhyd.2014.12.001

Sharma, A., Gautam, S., & Wadhawan, S. (2014). Xanthomonas. Encyclopedia of Food Microbiology: Second Edition, 3, 811–817. https://doi.org/10.1016/B978-0-12-384730-0.00359-1

Silva, V., Igrejas, G., Falco, V., Santos, T. P., Torres, C., Oliveira, A. M. P., Pereira, J. E., Amaral, J. S., & Poeta, P. (2018). Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control, 92(March), 516–522. https://doi.org/10.1016/j.foodcont.2018.05.031

Silva, R. V., Costa, S. C. C., Branco, C. R. C., & Branco, A. (2016). In vitro photoprotective activity of the Spondias purpurea L. peel crude extract and its incorporation in a pharmaceutical formulation. Industrial Crops and Products, 83, 509–514. https://doi.org/10.1016/j.indcrop.2015.12.077

Steiner, A. D., Vargas, A., Fronza, N., Brandelli, A., & dos Santos, J. H. Z. (2017). Antimicrobial activity of some natural extracts encapsulated within silica matrices. Colloids and Surfaces B: Biointerfaces, 160, 177–183. https://doi.org/10.1016/j.colsurfb.2017.09.028

Thakur, H., Sharma, A., Sharma, P., & Rana, R. S. (2021). An insight into the problem of bacterial wilt in Capsicum spp. With special reference to India. Crop Protection, 140(September 2020), 105420. https://doi.org/10.1016/j.cropro.2020.105420

Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23–33. https://doi.org/10.1016/j.jbiotec.2016.10.001

Vaquero, M. J. R., Alberto, M. R., & de Nadra, M. C. M. (2007). Antibacterial effect of phenolic compounds from different wines. Food Control, 18(2), 93–101. https://doi.org/10.1016/j.foodcont.2005.08.010

Wang, C., Liu, X., Wang, J., Zhou, J., Cui, Z., & Zhang, L. H. (2016). Design and characterization of a polyamine derivative inhibiting the expression of type III secretion system in Pseudomonas aeruginosa. Scientific Reports, 6(July 2015), 1–13. https://doi.org/10.1038/srep30949

Wang, X., Hou, X., Liang, S., Lu, Z., Hou, Z., Zhao, X., Sun, F., & Zhang, H. (2018). Biodegradation of fungicide Tebuconazole by Serratia marcescens strain B1 and its application in bioremediation of contaminated soil. International Biodeterioration and Biodegradation, 127(September 2017), 185–191. https://doi.org/10.1016/j.ibiod.2017.12.001

Yang, J., Wang, W., Yang, P., Tao, B., Yang, Z., Zhang, L. H., & Dong, J. G. (2015). Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 “pesta” granular formulation. Journal of Integrative Agriculture, 14(7), 1348–1355. https://doi.org/10.1016/S2095-3119(14)60967-9

Yang, S., Peng, Q., San Francisco, M., Wang, Y., Zeng, Q., & Yang, C. H. (2008). Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS ONE, 3(8). https://doi.org/10.1371/journal.pone.0002973

Yin, H., Deng, Y., Wang, H., Liu, W., Zhuang, X., & Chu, W. (2015). Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa. Scientific Reports, 5(November). https://doi.org/10.1038/srep16158

Zhang, Y., Sass, A., Van Acker, H., Wille, J., Verhasselt, B., Van Nieuwerburgh, F., Kaever, V., Crabbé, A., & Coenye, T. (2018). Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels. Frontiers in Microbiology, 9(AUG), 1–10. https://doi.org/10.3389/fmicb.2018.01952

Downloads

Published

09/01/2022

How to Cite

CARNAVAL, L. de S. C.; CERBONESCHI, M.; TEGLI, S.; YOSHIDA, C. M. P.; MELO, E. de A. .; SANTOS, A. M. P. Potential agrifood application of seriguela (Spondias purpurea L.) residues extract and nanoZnO as antimicrobial, antipathogenic and antivirulence agents. Research, Society and Development, [S. l.], v. 11, n. 1, p. e37211125033, 2022. DOI: 10.33448/rsd-v11i1.25033. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25033. Acesso em: 9 sep. 2024.

Issue

Section

Agrarian and Biological Sciences