Potential agrifood application of seriguela (Spondias purpurea L.) residues extract and nanoZnO as antimicrobial, antipathogenic and antivirulence agents
DOI:
https://doi.org/10.33448/rsd-v11i1.25033Keywords:
Vegetal source bioactives; Nanoparticles; Antimicrobial activity; Anti-pathogenicity; Antivirulence; Secretion system type three; Quorum sensing.Abstract
The impact of phytopathogenic microorganisms in several crops causes significant losses in agrifood industry, spoilage throughout food chain and storage. Nanoparticles and plant extracts have been highlighted by their antimicrobial properties applied in food packaging, agriculture, drug delivery systems and other medical approaches. Over the past few years, this group have studied the application of ZnO nanoparticles and agroindustrial wastes in edible food coatings/films. This study aimed to evaluate active characteristics from the extract of seriguela processing wastes and nanoZnO regarding to their inhibitory activity against bacterial pathogenicity and virulence systems TTSS (Type Three Secretion System) and QS (Quorum Sensing) for Pseudomonas savastanoi. Also, antibacterial action (inhibition area) against species of Curtobacterium, Clavibacter, E. coli, Xanthomonas and Serratia, and antifungal against Botrytis cinerea (reduction in colony size). The 60% extract inhibited the activation of QS and TTSS system in 20.26% and 13.54%, respectively; while nanoZnO at 3% reduced 46.77% QS and increased 302.88% TTSS. Extract without dilution inhibited the growth of Clavibacter michiganensis pv michiganensis (Gram-positive) and Xanthomonas phaseoli (Gram-negative), inhibitory zone of 94.25 mm2 and 452.39 mm2 respectively. The latter also being inhibited by nanoZnO 1 and 2% (138.23 mm2) and 3% (275.67 mm2). Pure extract inhibited 17.38% growth of fungal colony and nanoZnO (1 and 3%) in 33.08%. Finally, the active agents studied showed to be promising in the prevention of phytopathogenic diseases and consequently economic losses, food films/coatings and the extract as a biopesticide, reducing the environmental impact.
References
Akbar, A., & Anal, A. K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control, 38(1), 88–95. https://doi.org/10.1016/j.foodcont.2013.09.065
Alkan, D., & Yemenicioğlu, A. (2016). Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids, 55, 1–10. https://doi.org/10.1016/j.foodhyd.2015.10.025
Andrade, R. A. M. de S., Maciel, M. I. S., Santos, A. M. P., & Melo, E. de A. (2015). Optimization of the extraction process of polyphenols from cashew apple agro-industrial residues. Food Science and Technology, 35(2), 354–360. https://doi.org/10.1590/1678-457X.6585
Arroyo, B. J., Bezerra, A. C., Oliveira, L. L., Arroyo, S. J., Melo, E. A. de, & Santos, A. M. P. (2020). Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.125566
Arulmozhi, P., Vijayakumar, S., Praseetha, P. K., & Jayanthi, S. (2019). Extraction methods and computational approaches for evaluation of antimicrobial compounds from Capparis zeylanica L. Analytical Biochemistry, 572(December 2018), 33–44. https://doi.org/10.1016/j.ab.2019.02.006
Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria-"A Battle of the Titans". Frontiers in Microbiology, 9(JUL), 1–26. https://doi.org/10.3389/fmicb.2018.01441
Bataglion, G. A., Da Silva, F. M. A., Eberlin, M. N., & Koolen, H. H. F. (2015). Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chemistry, 180, 280–287. https://doi.org/10.1016/j.foodchem.2015.02.059
Biancalani, C., Cerboneschi, M., Tadini-Buoninsegni, F., Campo, M., Scardigli, A., Romani, A., & Tegli, S. (2016). Global analysis of type three secretion system and quorum sensing inhibition of pseudomonas savastanoi by polyphenols extracts from vegetable residues. PLoS ONE, 11(9), 1–21. https://doi.org/10.1371/journal.pone.0163357
Chart, H., Smith, H. R., La Ragione, R. M., & Woodward, M. J. (2000). An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. Journal of Applied Microbiology, 89(6), 1048–1058. https://doi.org/10.1046/j.1365-2672.2000.01211.x
Chen, Y., Yin, Y., & Pathology, P. (2007). e - X tra * Curtobacterium flaccumfaciens pv . beticola , A New Pathovar. Plant Disease, December 2006, 677–684.
Dahech, I., Farah, W., Trigui, M., Hssouna, A. Ben, Belghith, H., Belghith, K. S., & Abdallah, F. Ben. (2013). Antioxidant and antimicrobial activities of Lycium shawii fruits extract. International Journal of Biological Macromolecules, 60(September 2009), 328–333. https://doi.org/10.1016/j.ijbiomac.2013.05.020
Dannenberg, G. da S., Funck, G. D., Silva, W. P. da, & Fiorentini, Â. M. (2019). Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control, 95(April 2018), 115–120. https://doi.org/10.1016/j.foodcont.2018.07.034
de León, L., Siverio, F., López, M. M., & Rodríguez, A. (2008). Comparative efficiency of chemical compounds for in vitro and in vivo activity against Clavibacter michiganensis subsp. michiganensis, the causal agent of tomato bacterial canker. Crop Protection, 27(9), 1277–1283. https://doi.org/10.1016/j.cropro.2008.04.004
Del Monte, D., De Martino, L., Marandino, A., Fratianni, F., Nazzaro, F., & De Feo, V. (2015). Phenolic content, antimicrobial and antioxidant activities of Hypericum perfoliatum L. Industrial Crops and Products, 74, 342–347. https://doi.org/10.1016/j.indcrop.2015.04.036
Devi, K. A., Pandey, P., & Sharma, G. D. (2016). Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI Journal of Biosciences, 23(4), 173–180. https://doi.org/10.1016/j.hjb.2016.12.006
Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2013). Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals, 26(6), 913–924. https://doi.org/10.1007/s10534-013-9667-6
Du, W. X., Olsen, C. W., Avena-Bustillos, R. J., Friedman, M., & McHugh, T. H. (2011). Physical and Antibacterial Properties of Edible Films Formulated with Apple Skin Polyphenols. Journal of Food Science, 76(2), M149–M155. https://doi.org/10.1111/j.1750-3841.2010.02012.x
Duffy, L. L., Osmond-McLeod, M. J., Judy, J., & King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 92, 293–300. https://doi.org/10.1016/j.foodcont.2018.05.008
Dutra, R. L. T., Dantas, A. M., Marques, D. de A., Batista, J. D. F., Meireles, B. R. L. de A., de Magalhães Cordeiro, Â. M. T., Magnani, M., & Borges, G. da S. C. (2017). Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Research International, 100(May), 650–657. https://doi.org/10.1016/j.foodres.2017.07.047
Engels, C., Gräter, D., Esquivel, P., Jiménez, V. M., Gänzle, M. G., & Schieber, A. (2012). Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Research International, 46(2), 557–562. https://doi.org/10.1016/j.foodres.2011.04.003
Esmailzadeh, H., Sangpour, P., Shahraz, F., Hejazi, J., & Khaksar, R. (2016). Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Materials Science and Engineering C, 58, 1058–1063. https://doi.org/10.1016/j.msec.2015.09.078
García-Lara, B., Saucedo-Mora, M. A., Roldán-Sánchez, J. A., Pérez-Eretza, B., Ramasamy, M., Lee, J., Coria-Jimenez, R., Tapia, M., Varela-Guerrero, V., & García-Contreras, R. (2015). Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61(3), 299–305. https://doi.org/10.1111/lam.12456
Gutiérrez-Barranquero, J. A., Reen, F. J., McCarthy, R. R., & O’Gara, F. (2015). Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens. Applied Microbiology and Biotechnology, 99(7), 3303–3316. https://doi.org/10.1007/s00253-015-6436-1
Gutiérrez-Pacheco, M. M., Bernal-Mercado, A. T., Vázquez-Armenta, F. J., Mart ínez-Tellez, M. A., González-Aguilar, G. A., Lizardi-Mendoza, J., Madera-Santana, T. J., Nazzaro, F., & Ayala-Zavala, J. F. (2019). Quorum sensing interruption as a tool to control virulence of plant pathogenic bacteria. Physiological and Molecular Plant Pathology, 106(February), 281–291. https://doi.org/10.1016/j.pmpp.2019.04.002
Haas, I. C. da S., Toaldo, I. M., Burin, V. M., & Bordignon-Luiz, M. T. (2018). Extraction optimization for polyphenolic profiling and bioactive enrichment of extractives of non-pomace residue from grape processing. Industrial Crops and Products, 112(September 2017), 593–601. https://doi.org/10.1016/j.indcrop.2017.12.058
Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004
He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003
Hiery, E., Adam, S., Reid, S., Hofmann, J., Sonnewald, S., & Burkovski, A. (2013). Genome-wide transcriptome analysis of Clavibacter michiganensis subsp. michiganensis grown in xylem mimicking medium. Journal of Biotechnology, 168(4), 348–354. https://doi.org/10.1016/j.jbiotec.2013.09.006
Huang, H. C., Erickson, R. S., & Hsieh, T. F. (2007). Control of bacterial wilt of bean (Curtobacterium flaccumfaciens pv. flaccumfaciens) by seed treatment with Rhizobium leguminosarum. Crop Protection, 26(7), 1055–1061. https://doi.org/10.1016/j.cropro.2006.09.018
Joshi, J. R., Burdman, S., Lipsky, A., Yariv, S., & Yedidia, I. (2016). Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P.carotovorum ssp. brasiliense via quorum sensing regulation. Molecular Plant Pathology, 17(4), 487–500. https://doi.org/10.1111/mpp.12295
Kanmani, P., & Rhim, J. W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106(1), 190–199. https://doi.org/10.1016/j.carbpol.2014.02.007
Kannan, K., Nivas, D., Kannan, V., & Bastas, K. (2015). Agro-Traditional Practices of Plant Pathogens Control. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria (Issue November 2017). https://doi.org/10.1201/b18892-6
Khaldi, R. El, Daami-Remadi, M., Hamada, W., Somai, L., & Cherif, M. (2015). The Potential of Serratia marcescens: An Indigenous Strain Isolated from Date Palm Compost as Biocontrol Agent of Rhizoctonia solani on Potato. Journal of Plant Pathology & Microbiology, s3. https://doi.org/10.4172/2157-7471.1000s3-006
Khokhani, D., Zhang, C., Li, Y., Wang, Q., Zeng, Q., Yamazaki, A., Hutchins, W., Zhou, S. S., Chen, X., & Yang, C. H. (2013). Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, erwinia amylovora. Applied and Environmental Microbiology, 79(18), 5424–5436. https://doi.org/10.1128/AEM.00845-13
Kostylev, M., Otwell, A. E., Richardson, R. E., & Suzuki, Y. (2015). Cloning should be simple: Escherichia coli DH5á-mediated assembly of multiple DNA fragments with short end homologies. PLoS ONE, 10(9), 1–7. https://doi.org/10.1371/journal.pone.0137466
Ma, D., Ji, D., Zhang, Z., Li, B., Qin, G., Xu, Y., Chen, T., & Tian, S. (2019). Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biology and Technology, 150(August 2018), 158–165. https://doi.org/10.1016/j.postharvbio.2019.01.005
Martins, P. M. M., Merfa, M. V., Takita, M. A., & De Souza, A. A. (2018). Persistence in phytopathogenic bacteria: Do we know enough? Frontiers in Microbiology, 9(MAY), 1–14. https://doi.org/10.3389/fmicb.2018.01099
Nafchi, A. M., Nassiri, R., Sheibani, S., Ariffin, F., & Karim, A. A. (2013). Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydrate Polymers, 96(1), 233–239. https://doi.org/10.1016/j.carbpol.2013.03.055
Nandhini, M., Rajini, S. B., Udayashankar, A. C., Niranjana, S. R., Lund, O. S., Shetty, H. S., & Prakash, H. S. (2019). Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Protection, 121(March), 103–112. https://doi.org/10.1016/j.cropro.2019.03.015
Nayantara, & Kaur, P. (2018). Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review. Biotechnology Research and Innovation, 2(1), 63–73. https://doi.org/10.1016/j.biori.2018.09.003
Ombiro, G. S. ombe, Sawai, T., Noutoshi, Y., Nishina, Y., Matsui, H., Yamamoto, M., Toyoda, K., & Ichinose, Y. (2018). Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis. Microbiological Research, 215(April), 29–35. https://doi.org/10.1016/j.micres.2018.06.005
Osdaghi, E., Taghavi, S. M., Fazliarab, A., Elahifard, E., & Lamichhane, J. R. (2015). Characterization, geographic distribution and host range of Curtobacterium flaccumfaciens: An emerging bacterial pathogen in Iran. Crop Protection, 78, 185–192. https://doi.org/10.1016/j.cropro.2015.09.015
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). ). Metodologia da pesquisa científica. [free e-book]. 1. ed. – Santa Maria, RS : Ed. UAB / NTE / UFSM. ISBN 978-85-8341-204-5
Pina-Pérez, M. C., & Ferrús Pérez, M. A. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A review. Trends in Food Science and Technology, 72(November 2017), 114–124. https://doi.org/10.1016/j.tifs.2017.12.007
Portugal Zegarra, M. del C. C., Santos, A. M. P., Silva, A. M. A. D., & Melo, E. de A. (2018). Chitosan films incorporated with antioxidant extract of acerola agroindustrial residue applied in chicken thigh. Journal of Food Processing and Preservation, 42(4), 1–12. https://doi.org/10.1111/jfpp.13578
Poveda, J. M., Loarce, L., Alarcón, M., Díaz-Maroto, M. C., & Alañón, M. E. (2018). Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Industrial Crops and Products, 112(October 2017), 617–625. https://doi.org/10.1016/j.indcrop.2017.12.063
Queiroz, P. S., Barboza, N. R., Cordeiro, M. M., Leão, V. A., & Guerra-Sá, R. (2018). Rich growth medium promotes an increased on Mn(II) removal and manganese oxide production by Serratia marcescens strains isolates from wastewater. Biochemical Engineering Journal, 140(September), 148–156. https://doi.org/10.1016/j.bej.2018.09.018
Rahman, H. S., Othman, H. H., Hammadi, N. I., Yeap, S. K., Amin, K. M., Samad, N. A., & Alitheen, N. B. (2020). Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. In International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S227805
Santos, Andrelina M.P., & Santos, E. J. P. (2012). Optimization of nanostructured ZnO-particle fabrication route with different alcohols and varying sodium hydroxide concentration. ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, June, 24–28.
Santos, Andrelina Maria Pinheiro, Demetrio, A. A., Santos, M. M. dos, & Melo, E. de A. (2019). CHITOSAN/NANOZNO EDIBLE COATINGS: PREPARATION AND ACTIVE FOOD PACKING APPLICATION. In A Produção do Conhecimento nas Ciências da Saúde 2. https://doi.org/10.22533/at.ed.99919300420
Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519–537. https://doi.org/10.1007/s12571-012-0200-5
Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264–271. https://doi.org/10.1016/j.foodhyd.2014.12.001
Sharma, A., Gautam, S., & Wadhawan, S. (2014). Xanthomonas. Encyclopedia of Food Microbiology: Second Edition, 3, 811–817. https://doi.org/10.1016/B978-0-12-384730-0.00359-1
Silva, V., Igrejas, G., Falco, V., Santos, T. P., Torres, C., Oliveira, A. M. P., Pereira, J. E., Amaral, J. S., & Poeta, P. (2018). Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control, 92(March), 516–522. https://doi.org/10.1016/j.foodcont.2018.05.031
Silva, R. V., Costa, S. C. C., Branco, C. R. C., & Branco, A. (2016). In vitro photoprotective activity of the Spondias purpurea L. peel crude extract and its incorporation in a pharmaceutical formulation. Industrial Crops and Products, 83, 509–514. https://doi.org/10.1016/j.indcrop.2015.12.077
Steiner, A. D., Vargas, A., Fronza, N., Brandelli, A., & dos Santos, J. H. Z. (2017). Antimicrobial activity of some natural extracts encapsulated within silica matrices. Colloids and Surfaces B: Biointerfaces, 160, 177–183. https://doi.org/10.1016/j.colsurfb.2017.09.028
Thakur, H., Sharma, A., Sharma, P., & Rana, R. S. (2021). An insight into the problem of bacterial wilt in Capsicum spp. With special reference to India. Crop Protection, 140(September 2020), 105420. https://doi.org/10.1016/j.cropro.2020.105420
Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23–33. https://doi.org/10.1016/j.jbiotec.2016.10.001
Vaquero, M. J. R., Alberto, M. R., & de Nadra, M. C. M. (2007). Antibacterial effect of phenolic compounds from different wines. Food Control, 18(2), 93–101. https://doi.org/10.1016/j.foodcont.2005.08.010
Wang, C., Liu, X., Wang, J., Zhou, J., Cui, Z., & Zhang, L. H. (2016). Design and characterization of a polyamine derivative inhibiting the expression of type III secretion system in Pseudomonas aeruginosa. Scientific Reports, 6(July 2015), 1–13. https://doi.org/10.1038/srep30949
Wang, X., Hou, X., Liang, S., Lu, Z., Hou, Z., Zhao, X., Sun, F., & Zhang, H. (2018). Biodegradation of fungicide Tebuconazole by Serratia marcescens strain B1 and its application in bioremediation of contaminated soil. International Biodeterioration and Biodegradation, 127(September 2017), 185–191. https://doi.org/10.1016/j.ibiod.2017.12.001
Yang, J., Wang, W., Yang, P., Tao, B., Yang, Z., Zhang, L. H., & Dong, J. G. (2015). Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 “pesta” granular formulation. Journal of Integrative Agriculture, 14(7), 1348–1355. https://doi.org/10.1016/S2095-3119(14)60967-9
Yang, S., Peng, Q., San Francisco, M., Wang, Y., Zeng, Q., & Yang, C. H. (2008). Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS ONE, 3(8). https://doi.org/10.1371/journal.pone.0002973
Yin, H., Deng, Y., Wang, H., Liu, W., Zhuang, X., & Chu, W. (2015). Tea polyphenols as an antivirulence compound Disrupt Quorum-Sensing Regulated Pathogenicity of Pseudomonas aeruginosa. Scientific Reports, 5(November). https://doi.org/10.1038/srep16158
Zhang, Y., Sass, A., Van Acker, H., Wille, J., Verhasselt, B., Van Nieuwerburgh, F., Kaever, V., Crabbé, A., & Coenye, T. (2018). Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels. Frontiers in Microbiology, 9(AUG), 1–10. https://doi.org/10.3389/fmicb.2018.01952
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luana de Souza Cavalcante Carnaval; Matteo Cerboneschi; Stefania Tegli; Cristiana Maria Pedroso Yoshida; Enayde de Almeida Melo; Andrelina Maria Pinheiro Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.