Systematic analysis on the obtaining of fibrinolytic fungi enzymes
DOI:
https://doi.org/10.33448/rsd-v11i2.25449Keywords:
Protease; Thrombolytic; Mushroom; Filamentous fungi; Fermentation; Purification.Abstract
Fibrinolytic proteases operate directly on fibrin clot and are able to maintain blood flow. Fungi show up as viable sources for obtaining this enzyme. The purpose of this systematic review is to is to unveil all the information concerning production, purification and characterization of fibrinolytic proteases by fungi. The search was conducted in ScienceDirect, PubMed and Scopus databases, using as keywords “(Fibrinolytic enzyme) OR (Fibrinolytic protease) AND (Fungal or Fungus or Fungi)”. Delimiting period of 10 years (2011-2021). The results obtained were filtered by selection criteria, and review articles or articles outside the scope of this work were excluded. The articles were evaluated and scored (0-10) according to pre-established criteria. None of the studies obtained the score 10, however the study with the highest score (9) presented relevant data in all criteria analyzed, obtaining fibrinolytic enzyme from Xylaria curta. Among the 21 selected articles, 12 different genera appear and Submerged Fermentation and purification of Serino-proteases were more described. This work also observed a greater representation of purification and characterization steps, indicating the need for attention to cultivation process and enzymatic application. It is clear that the production of these enzymes by fungi is pertinent towards the high recovery observed even after purification and its tendency for pharmaceutical application.
References
Ali, A. M. M. & Bavisetty, S. C. B. (2020). Purification, physicochemical properties, and statistical optimization of fibrinolytic enzymes especially from fermented foods: A comprehensive review. International Journal of Biological Macromolecules, 163 (15), 1498-1517.
Andrade, M. V. S. Andrade, L. A. P., Bispo, A. F. P., Freitas, L. A., Andrade, M. Q. S., Feitosa, G. S., Feitosa-Filho, G. S. (2018). Evaluation of the bleeding intensity of patients anticoagulated with warfarin or dabigatran undergoing dental procedures, Arq. Bras. Cardiol. 111 (3), 394-399.
Astrup, T. & Mullertz, S. (1952). The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40 (2), 346–351.
Batista, J. M. S. Neves, A. G. D.; Ferreira, J. V. S.; Cunha, M. N. C. ; Costa, R. M. P. B. ; Porto, A.L.F. (2021). Purification and biochemical characterization of an extracellu lar fructosyltransferase - rich extract produced by Aspergillus tamarii Kita UCP1279. Biocatalysis and Agricultural Biotechnology, 26 (1), 1-9.
Bin, W., Licheng W., Daijie C., Zhijun Y., Minyu L. 2009. Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. Of Indust. Microbiology & Biotechnology, 36 (3), 451-459.
Castro, A. M., Teixeira, M. M. P., Carvalho, D. F., Freire, D. M. G. Castilho, R. (2011). Multiresponse Optimization of Inoculum Conditions for the Production of Amylases and Proteases by Aspergillus awamori in Solid-State Fermentation of Babassu Cake. Enzyme Research. 2011 (1), 1-10.
Chen, Y., Fu, X., Mei, X., Zhou, Y. (2016). Characterization of functional proteases from flowers of tea (Camellia sinensis) plants. Journal of Functional Foods, 25 (2016), 149-159.
Choi, B., Sapkota, K. Choi, J., Shin, C., Kim, S., Kim, S. (2013). Herinase: A Novel Bi-functional Fibrinolytic Protease from the Monkey Head Mushroom, Hericium erinaceum. Appl Biochem Biotechnol. 170, 609–622.
Choi, D., Cha, W., Park, N., Kim, H., Lee, J. H., Park, J., Park, S. (2011). .Purification and characterization of a novel fibrinolytic enzyme from fruiting bodies of Korean Cordyceps militaris. Bioresource Technology 102, 3279–3285.
Choi, J., Kim, D., Kim, S., Kim, S. (2017). Purification and partial characterization of a fibrinolytic enzyme from the fruiting body of the Medicinal and edible mushroom Pleurotus ferulae. Prep. Biochemistry and Biotechnology 47 (6), 539-546.
Clementino, EL. L., Sales, A. E., Cunha, M. N. C., Porto, A. L. F., Porto, T. S. (2019). Produção e purificação integrada de protease fibrinolítica de Mucor subtilissimus UCP 1262. Arq. Bras. Med. Vet. Zootec., 71, 553-562.
Deng, Y., Liu, X., Katrolia, P., Kopparapu, N. K., Zheng, X. (2018). A dual-function chymotrypsin-like serine protease with plasminogen activation and fibrinolytic activities from the GRAS fungus, Neurospora sitophila. International Journal of Biological Macromolecules 109, 1338–1343.
Flute, P. T. & MCPath, M. D. (1964). Hæmorrhage and Fibrinolysis. 57 (7), 603-606.
Galo, L. A., Colombo, M. F. (2009). Espectrofotometria de longo caminho óptico em espectrofotômetro de duplo-feixe convencional: uma alternativa simples para investigações de amostras com densidade óptica muito baixa. Quim. Nova. 32 (2), 488-492.
Greenhalgh T. (1997). How to read a paper. Papers that summarise other papers (systematic reviews and meta-analyses). BMJ. 315, 668–671.
Guggisberg, D., Risse, G. M. C., Hadorn, H. (2011). Determination of Vitamin B-12 in meat products by RP-HPLC after enrichment and purification on an immunoaffinity column. Meat Science. 90 (2012) 279-283.
Haq, I. (2004). Protease biosynthesis by mutant strain of Penicillium griseoroseum and cheese formation. Pakistan J. Biol. Sci. 7, 1473-1476.
Kim, H, C., Choi, B. S., Sapkota, K. Kim, S. Lee, H. J., Yoo, J. C., Kim, J. (2011). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes. Process Biochemistry. 45, 1545-1553.
Kumaran, S., Palani, P., Nishanthi, R., Kaviyarasan, V. (2011). Studies on Screening, Isolation and Purification of a Fibrinolytic Protease from an Isolate(VK12) of Ganoderma Lucidum and Evaluation of its Antithrombotic Activity. Med. Mycol. J. 52, 153-162.
Li, G., Liu, X., Cong, S., Deng, Y. Zheng, X. (2021). A novel serine protease with anticoagulant and fibrinolytic activities rom the fruiting bodies of mushroom Agrocybe aegerita. International Journal of Biological Macromolecules. 168, 631–639.
Lins, S., Wang, Y., Zhang L., Guan, W. (2019). Dabigatranmust be used carefully: literature review and recommendations for management of adverse events, Drug design, development and therapy 13 (2019), 1527—1533.
Liu, X., Kopparapu, N., Li, Y., Deng, Y., Zheng, X. (2017). Biochemical characterization of a novel fibrinolytic enzyme from Cordyceps militaris. International Journal of Biological Macromolecules 94, 793–801.
Liu, X., Kopparapu, N. K., Shi, X., Deng, Y. P., Zheng, X., Jianping W. (2015). Purification and biochemical characterization of a novel fibrinolytic enzyme from culture supernatant of Cordyceps militaris J. Agri Food Chem. 63 (8), 2215-2224.
Liu, X., Kopparapu, N. K., Shi, X., Deng, Y. P., Zheng, X., Katrolia P. Xheng, H. (2016). Purification and characterization of a fibrinolytic enzyme from the food-grade fungus, Neurospora sitophila. Journal of Molecular Catalysis B: Enzymatic 134, 98–104.
Mamo, J., Kangwa, M., Fernandez-Lahore, H. M., Assefa, F. (2020). Optimization of media composition and growth conditions for production of milk-clotting protease (MCP) from Aspergillus oryzae DRDFS13 under solid-state fermentation. Brazilian Journal of Microbiology, 51 (2020), 571–584.
Martínez-Medina, G. A., Barragán, A. P., Ruiz, H. A. Ilyina, A., Hernández, J. L. M., Rodríguez-Jasso, R. M., Concha, j. l., Aguilar-González, C. N. (2019). Fungal Proteases and Production of Bioactive Peptides for the Food Industry. Enzymes in Food Biotechnology 14, 221-245.
Meshram, V., Sanjai S., Mahiti G., Neha, K. (2016). Production, Purification and Characterisation of a Potential Fibrinolytic Protease from Endophytic Xylaria curta by Solid Substrate Fermentation. App. Biochem. Biotech. 181 (4), 1496-1512.
Meshram, V., Saxena, S., Paul, K. (2016). Xylarinase: a novel clot busting enzyme from an endophytic fungus Xylaria curta. J Enzyme Inhib Med Chem, 31 (6), 1502–1511.
Mohamed Ali, S., Ling, T. C., Muniand, S., Raman, S. T. J., Sabaratnam. V. (2014). Recovery and partial purification of fibrinolytic enzymes of Auricularia polytricha (Mont.) Sacc by an aqueous two-phase system. Separation and Purification Technology 122, 359–366.
Moon, S., Kim, J., Kim, H., Choi, M., Park, B. R., Kim, G., Ahn, H., Chun, H. S., Shin, Y. K., Kim, J., Kim, D., K., Lee, S., Seo, W., Kim, Y. H., Kim, C. S. (2014). Purification and characterization of a novel fibrinolytic a chymotrypsin like serine metalloprotease from the edible mushroom, Lyophyllum shimeji. Journal of Bioscience and Bioengineering 117 (5), 544-550.
Nascimento, T. P., Coniff, A. E. S. Moura, J. A. S., Batista, J. M. S., Bosta, R. M. P. B., Posto, C. S., Takaki, G. M. C., Porto, T. S., Posto, A. L. F. (2020). Protease from Mucor subtilissimus UCP 1262: Evaluation of several specifi c protease activitie s and purifi cation of a fi brinolytic enzyme. Health Sciences. An Acad Bras Cienc. 92 (4), 1-12.
Nascimento, T. P., Salles, A. E. Porto, T. S., Costa, R. M. P B., Breudo, l., Uversky, V. N., Porto, A. L. F., Converti, A. (2017). Purification, biochemical, and structural characterization of a novel fibrinolytic enzyme from Mucor subitillissimus UCP 1262. Bioprocess Biosyst Eng. 40, 1209–1219.
Nascimento, T. P., Salles, A. E. Porto, T. S., Costa, R. M. P B., Breudo, l., Uversky, V. N., Porto, A. L. F., Converti, A. (2016). Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate). Journal of Chromatography B, 1025, 16–24.
Shirasaka, N., Naitou, M., Okamura, K., Kusuda, M., Fukuta, Y., Terashita, T. (2012). Purification and characterization of a fibrinolytic protease from Aspergillus oryzae KSK-3. Mycoscience, 53 (5) 354-364.
PESSOA-JR, A. 2020. Rompimento celular. In. KILIKIAN, B. V.; PESSOA- JR, A. (2020). Purificação de produtos biotecnológicos: operações e processos com aplicação industrial. 2ª ed. São Paulo: BLUCHER, 67-103.
Raju, E. & Divakar, G. (2013). Optimization and Production of Fibrinolytic Protease (GD kinase) from Different Agro Industrial Wastes in Solid State Fermentation. Current Trends in Biotechnology and Pharmacy. 7, 763-712.
Santos, P. S., Solidade, L. S., Souza, J. G. B., Sampaio, G. Braga jr, A. C. R., Assis, F. G. V. Leal, P. L. (2018). Fermentação em estado sólido em resíduos agroindustriais para a produção de enzimas: Uma revisão sistemática. The Journal of Engineering and Exact Sciences, 4 (2), 1-8.
Soccol, C. R., Costa, E. S. F., Letti, L. A. J., Karp, S, G., Waoicishowski, A. L., Vaderberghe, L. P. S. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1, 52-71.
Souza, P. M., Bittencourt, M. L. A., Caprara, C. C., Freitas, M., Almeida, R. P. C., Silveira, D., Fonseca, Y. M. Ferreira-Filho, E. X., Pessoa-Junior, A., Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases. Braz. J. Microbiol. 46 (2), 1-10.
Wang, H., Guo, S., Huang, M., Lumsch, H., Thorsten, W. (2010). Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. 53, 1163–1169.
Wang, S., Wu, Y., Liang, T. (2011). Purification and biochemical characterization of a nattokinase by conversion of shrimp shell with Bacillus subtilis TKU007. New Biotechnology, 28 (2), 196-202.
Liu, X., Zheng, X., Qian, P., Kopparapu, N., Deng, Y., Nonaka, M., Harada, N. (2014). Purification and Characterization of a Novel Fibrinolytic Enzyme from Culture Supernatant of Pleurotus ostreatus. J. Microbiol. Biotechnol. 24 (2), 245–253.
Zabell R. A. & Morell, J. J. (2020). The characteristics and classification of fungi and bacteria. Wood Microbiology. 55-98 https://doi.org/10.1016/B978-0-12-819465-2.00003-6
Zhang, S., Wang, Y., Zhang, N., Sun, Z., Shi, Y., Cao, X., Wang, H. (2015). Purification and Characterisation of a Fibrinolytic Enzyme from Rhizopus micro sporus var. Tuberosus. Food Technol. Biotechnol. 53 (2), 243–248.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kethylen Barbara Barbosa Cardoso; Maria Clara Nascimento; Anna Carolina Batista; Vagne de Melo Oliveira; Thiago Pajeú Nascimento; Juanize Matias da Silva Batista; Romero Marcos Pedrosa Brandão Costa; Lorenzo Pastrana; Ana Lúcia Figueiredo Porto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.