PI controller implementation for the two wheels of a differential robot using NI MyRio

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25857

Keywords:

Mobile Robotics; PI Controller; PID; LabVIEW.

Abstract

Introduction. Computational power improvement throughout the time combined with the overall technology advancement has allowed the development and use of robotics for several applications, such as supervision in hazardous places, transportation, vigilance, tourism guiding and, cleaning, among others. The mobile robotics field industry is not yet visible in Brazil, since there is no expressive national manufacturer of a platform for robotics development and programming. Objective. Thus, this article aims to show the development of a mobile robot to be used in internal and external environments for didactic purposes and as a development platform. Methodology. The development of a mobile robot includes hardware and software design, and, in this last group, there are the speed controllers, which are an important part of the robot design and building.  In our article, it is implemented a PI controller in an embedded system of National Instruments, called NI-MyRio. This system is programmed in LabVIEW and embeds speed control for the wheels, besides the encoders reading. Additionally, it is connected to an Ethernet network, allowing supervision and control from one or more computers in the same network. Results. It was possible to model the wheels and to configure the PI controller by using such models and the internal control model method. In the experiments, it was possible to prove the functionality of the controllers satisfactorily. Conclusion. In conclusion, using the methodology described above, it was possible to model, build, and evaluate the robot and the controller, fulfilling the project requirements.

References

Åström, K. J. (2002). Control System Design by Karl Johan Åström. https://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom.html

Astrom, K. J., & Hägglund, T. (2006). Advanced PID control. In ISA-The Instrumentation, Systems, and Automation Society.

Atherton, D. P. (1995). An Analysis Package Comparing PID Anti-Windup Strategies. IEEE Control Systems, 15(2), 34–40. https://doi.org/10.1109/37.375281

Ayres, L. M., Batista, L. G., da Silva, J. R., Motta, V. da R., Marques, V. M., & Cuadros, M. A. S. L. (2017). Desenvolvimento e Implementação de uma Arquitetura de Navegação Para um Robô Móvel Utilizando Comandos de Voz, Algoritmo A* e o Controlador Backstepping. XIII Simpósio Brasileiro de Automação Inteligente - SBAI.

Ben-Ari, M., & Mondada, F. (2018). Elements of Robotics. Springer International Publishing. https://doi.org/10.1007/978-3-319-62533-1

Bernardes, N. D. (2017). Implementação do PID fracionário com filtro de Kalman em um robô móvel diferencial. Federal Institute of Espirito Santo.

Bezerra, C. G. (2004). Localização de um robô móvel usando odometria e marcos naturais. Universidade Federal do Rio Grande do Norte.

Campos, Mario César Massa; Teixeira, H. C. G. (2010). Controles típicos de equipaemntos e processos industriais. Blucher, Ed. (2nd ed.).

Cuadros, D., A, M., Rogério, P., & Gamarra, D. (2015). Development of a mobile robotics platform for navigation tasks using image processing. In Computer Science and Applications (pp. 457–463). CRC Press. https://doi.org/10.1201/b18508-79

Faisal, M., Hedjar, R., Al Sulaiman, M., & Al-Mutib, K. (2013). Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment. International Journal of Advanced Robotic Systems, 10. https://doi.org/10.5772/54427

Manyika, J., Chui, M., & Bughin, J. (2013). Disruptive technologies: Advances that will transform life, business, and the global economy. McKinsey Global …, May, 163. http://www.mckinsey.com/insights/business_technology/disruptive_technologies%5Cnhttp://www.chrysalixevc.com/pdfs/mckinsey_may2013.pdf

Paiva, B., de Freitas, S., Medeiros, M. G., Ruella Da Silva, J., Maia De Almeida, G., Antonio De Souza, M., & Cuadros, L. (2016). Utilização de exemplos criados no software LabVIEW ® implementados no starter kit 2.0 como ferramenta no ensino-aprendizagem da robótica.

Rivera, D. E., Morari, M., & Skogestad, S. (1986). Internal Model Control, 4. PID Control Design, 1, 252–265.

RobotShop. (2022). Dr. Robot Jaguar 4x4 Mobile Platform - RobotShop. https://www.robotshop.com/en/dr-robot-jaguar-4x4-mobile-platform.html

Romero, R. A. F., Silva Junior, E. P. e, Osório, F. S., & Wolf, D. F. (2014). Robótica Móvel (Vol. 1). LTC.

Rundqwist, L. (1991). Anti-reset windup for PID controllers. IFAC Symposia Series - Proceedings of a Triennial World Congress, 4(8), 453–458. https://doi.org/10.1016/s1474-6670(17)51865-0

Sharma, R., Gaur, P., & Mittal, A. P. (2017). Optimum Design of Fractional-Order Hybrid Fuzzy Logic Controller for a Robotic Manipulator. Arabian Journal for Science and Engineering, 42(2), 739–750. https://doi.org/10.1007/s13369-016-2306-0

Simoens, P., Dragone, M., & Saffiotti, A. (2018). The Internet of Robotic Things. International Journal of Advanced Robotic Systems, 15(1), 172988141875942. https://doi.org/10.1177/1729881418759424

Souza, J. A. M. F. (2005). Introdução aos robôs.

Tommasi, E., Faria, H., Cuadros, M., Almeida, G., Resende, C., & Gamarra, D. (2015). Estudo Comparativo de Controladores de Seguimento de Trajetória para Robôs de Tração Diferencial: Fuzzy, Ganhos Fixos e Backstepping. XII Simpósio Brasileiro de Automação Inteligente (SBAI), 1–6.

Vrancic, D., & Hanus, R. (1996). Anti-Windup, Bumpless, and Conditioned Transfer Techniques for PID Controllers. IEEE Control Systems, 16(4), 48–57. https://doi.org/10.1109/37.526915

Y.Abdalla, T., & I. Hamzah, M. (2013). Trajectory Tracking Control for Mobile Robot using Wavelet Network. International Journal of Computer Applications, 74(3), 32–37. https://doi.org/10.5120/12866-9700

Downloads

Published

28/01/2022

How to Cite

OLIVEIRA, R. do A. .; CUADROS, M. A. de S. L. .; XAVIER, C. S. .; VALADÃO, C. T. . PI controller implementation for the two wheels of a differential robot using NI MyRio. Research, Society and Development, [S. l.], v. 11, n. 2, p. e38211225857, 2022. DOI: 10.33448/rsd-v11i2.25857. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25857. Acesso em: 19 nov. 2024.

Issue

Section

Engineerings