Nutritional value of cane broth and nutraceutical potential of caná – cane broth´s fermented drink

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26112

Keywords:

Sugarcane; Phytochemicals; Caná; Fermented sugarcane juice.

Abstract

Brazil is the world's largest producer of sugarcane, and its juice is used mainly for the production of sugar, fuel alcohol and industrial cachaça. To a lesser extent, thousands of producers cultivate sugarcane on a rural scale, for the production of alembic cachaça, brown sugar, rapadura and molasses. In recent years, however, these producers have been looking for options that, in addition to expanding the range of products, allow them to add more value to their properties and sugarcane fields. In this context, the feasibility of producing fermented sugarcane juice as a final drink, similar to grape wine, has been considered. The market potential of this beverage has been markedly expanded as a result of recent research, which proved the presence of phytoactive substances in sugarcane juice, such as apigenin, luteolin and asterine, among others. Continuing these works, which have already made it possible to scientifically support millenary practices related to the use of sugarcane juice in Ayuvedic medicine, is very important, both to reinforce the appreciation of sugarcane juice in the human diet, and to enable the classification of sugarcane - the fermented sugarcane of the emerging sugarcane juice in Brazil – as a beverage with functional activity, following the example of the recognition already won by wines that come from the fermentation of grape juice. To contribute in this direction, an update is presented in the scope of the chemical composition of the sugarcane juice, highlighting the main phytoactives already characterized.

References

Abbas, S.R., Sabir, S.M., Ahmad, S.D., Boligon, A.A. & Athayde, M.L. (2014). Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem. 147, 10-16.

Abasy, M., Motobu, M., Na, K.J, Sameshina, T., Koge, K. & Onodera, T. (2002). Immunostimulating and growth promoting effects of sugarcane extracts (SCE) in chickens. J. Vet. Med. Science, 64, 1061–1063.

Abasy, M., Motobu, M., Na, K.J., Shimura, K., Nakamura, K. & Koge, K. (2003). Protective effect of sugarcane ectracts (SCE) on Eimeria tenella infections in chickens. J. Vet. Med. Sci., 65, 865–871.

Abdelaziz, K.M., Cabrera, M.C.G., Vina, J. & Borras, E.C. (2015). Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev.: 837042. http://dx.doi.org/10.1155/2015/837042

Aguirre, F.O., García, J.R., Ruiz, N.M., Robles, A.C., Díaz, S.M., Parrilla, E.A. & Medrano, A.W. (2016). Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules, 21(9). http://dx.doi.org/10.3390/molecules21091264

Akhtar, M., Hafeez, M.A., Muhammad, F. & Haq, A.U. (2008). Immunomodulatory and protective effects of sugar cane juice in chickens against Eimeria Infection. Turkish J. Vet. Animal Sci., 32(6), 463-467.

Almeida, J.M.D., Novoa, A.V., Linares, A.F., Lajolo, F.M. & Genovese, M.I. (2006). Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice. Plant Foods Human Nut., 61: 187–192. http://dx.doi.org/ 10.1007/s11130-006-0032-6

Amer, S., Na, K.J., Motobu, M. & Abasy, M. (2005). Radioprotective effect of sugar cane extract in chickens. Phytot. Res., 19(6):496-500. doi:10.1002/ptr.1688

Amerine, M.A. & Thoukis, G. (1958). The glucose-fructose ratio of California Grapes. Vitis, 1, 224-229. doi.org/10.5073/vitis.1958.1.224-229

Anvisa (2005). Res. RDC nº 269, de 22/09/ 2005. Aprova o Regulamento técnico sobre a ingestão diária recomendada (IDR) de proteína, vitaminas e minerais”.

Awais, M.M., Akhtar, M., Muhammad, F, Haq, A.U. & Anwar, I. (2011). Immunotherapeutic effects of some sugar cane (Saccharum officinarum L.) extracts against coccidiosis in industrial broiler chickens. Exp. Parasit.,128 (2),104-110. doi:10.1016/j.exppara.2011.02.024

Chen, C. (2016). Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid Med Cell Longev. doi: 10.1155/2016/3571614

Colombo, R; Yariwake; J.H., Queiroz, E.F. & Hostettmann, K.N. (2009). On-line identification of minor flavones from sugarcane juice by lc/uv/ms and post-column derivatization. J. Braz. Chem. Soc., 20 (9). doi.org/10.1590/S0103-50532009000900003

Eggersdorfer, M. & Wyss, A. (2018). Carotenoids in human nutrition and health. Arch. Biochem. Biophys., 652: 18–26. doi:10.1016/j.abb.2018.06.001

Espíndola, K.M.M., Ferreira, R.G., Narvaez, L.M.N., Rosario, A.C.R.S., Silva, A.H.M., Silva, A.G.B, Vieira, A.P.O & Monteiro, M.C. (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol., 9, 541. doi: 10.3389/fonc.2019.00541

Galano, A.; Márquez, M.F. & Idaboy, J.R.A. (2011). Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Phys. Chem. Chem. Phys., 13, 11199-11205. https://pubs.rsc.org/en/content/articlelanding/2011/cp/c1cp20722a

Gülçin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol., 217(2-3):213-20. doi: 10.1016/j.tox.2005.09.011.

Hentschel, H. (2009). Considerações sobre a produção e utilização do caldo de cana. Agropec. Catarinense, 22 (2), 45-48. https://publicacoes.epagri.sc.gov.br/RAC/article/view/816

Hussein, Y.A. & Shafey, R.S. (2019). The possible protective effects of saccharum officinarum l. (sugar cane) juice co-supplementation on gentamicin induced acute renal toxicity in adult albino rats. Int. J. Pharm. Toxicology, 7 (2), 29-34. doi.org/10.14419/ijpt.v7i2.29477.

IFCD (2017) Indian Food Composition Tables. Composition of sugarcane juice (Saccharum officinarum). In: foodhttps://vikaspedia.in/health/nutrition/nutritive-value-of-foods/healing-effects-of-sugarcane-juice. doi-url: ifct2017.com/frame.php?page=home

Iqbal, A., Kamran, H., Khalid, S., Jabeen, S. & Aslam, M. (2020). Glycemic response of natural sweeteners like sugarcane juice, honey and jaggery in healthy individuals. EAS J. Human. Cult. Studies, 2 (5). doi:10.36349/easjhcs.2020.v02i05.006

Jeyabal, P.V., Syed, M.B., Venkataraman, M., Sambandham, J.K. & Sakthisekaran, D. (2005) Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)induced hepatocellular carcinogenesis in Wistar albino rats. Mol. Carcinog. 44 (1): 11–20.

Kadam, U.S., Ghosh, S.B., Strayo, D. & Suprasanna, P. (2008). Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chem., 106, 1154–1160.

Kim, J.K. & Park, S.U. (2019). Chlorogenic acid and its role in biological functions: an up to date. Excli J.,18, 310-316. doi: 10.3390/molecules22030358

Kiokias, S., Proestos, C. & Oreopoulou, V. (2020). Phenolic acids of plant origin—a review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods, 9(4) doi:10.3390/foods9040534

Kumar, S. & Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. Sci. World J., 1, 16. doi:10.1155/2013/162750

LABM (2021 ). Curso de tecnologia do caná -caldo de cana fermentado. Belo Horizonte, LABM. www.labm.com.br

Lee, S.K., Mbwambo, Z.H., Chung, H., Luyengi, L., Gamez, E.J., Mehta, R.G.; Kinghorn, A.D. & Pezzuto, J.M. (1998). Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen , 1(1): 35–46.

Li, J., Shen, J., Sun, Z., Li, J., Li, C., Li, X., & Zhang, Y. (2017). Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01116

Lo, D.Y., Chen, T.H., Chien, M.S., Koge, K., Hosono, A. & Kaminogawa, S. (2005). Effects of sugarcane extract on modulation of immunity in pigs. J. Vet. Med. Science, 67(6), 591–597.

Lo, D.Y., Chien, M.S., Yeh, K.S., Koge, K., Lin, C.C., Hsuan, S.L. & Lee, W.C. (2006). Effects of sugar cane extract on pseudorabies virus challenge of pigs. J. Vet. Med. Sci., 68(3): 219-225. doi: 10.1292/JVMS.68.219.

Machado, H., Nagem, T.J., Peters, V.M., Fonseca, C.S. & Oliveira, T.T. (2008). Flavonóides e seu potencial terapêutico. Bol. Centro Bio l. Reprod. (Juiz de Fora), 27 (1/2), 33-39.

MAPA (2021). Portaria 339/21 de 28/06/2021. Estabelece os Padrões de Identidade e Qualidade da aguardente de cana e da Cachaça e revoga atos normativos com matérias pertinentes.

Orak, H.H. (2009). Glucose and fructose contents of some important red grape varieties by HPLC. Asian J. Chem, 21(4): 3068-3072.

Pereira, L.F.M., Ferreira, V.M., Oliveira, N.G., Sarmento, P.I.V.S.; Teodoro, E. (2017). Sugars levels of four sugarcane genotypes in different stem portions during the maturation phase. An. Acad. Bras. Cienc., 89 (2). doi.org/10.1590/0001-3765201720160594

Pimentel, C.V.M.B., Elias, M.F. & Philippi, S.T. (2019). Alimentos funcionais e compostos bioativos. São Paulo, Manole. 963 p. ISBN-13: ‎ 978-8520453605

Salehi, B., Machin, L., Monzote, L., Rad, J.S., Ezzat, S.M., Salem, M.A., Merghany, R.M., Mahdy, N.M., Kiliç, C.S., Sytar, O., Rad, M.M., Sharopov, F., Martins, N, Martorel, L.M. & Cho, W.C. (2020). Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega, 5 (20): 11849–11872. https://doi.org/10.1021/acsomega.0c01818

Schiozer, A.L. & Barata, L.E.S.; (2007). Estabilidade de corantes e pigmentos de origem vegetal. Rev. Fitos, 3(2), 6-24.

Singh, A., Lal, U.R.; Mukhtar, H.M.; Singh, P.S.; Shah, G. & Dhawan, R.K. (2015). Perfil fitoquímico da cana-de-açúcar e seus potenciais aspectos à saúde. Pharmacogn Rev., 9 (17), 45–54. doi: 10.4103 / 0973-7847.156340

Sultana, B. & Anwar, F. (2008) Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem, 108, 879−888.

TACO – Tabela Brasileira de Composição de Alimentos (2011). Campinas, cfn.org.br/wp-content/uploads/2017/03/ taco_4_edicao_.pdf

Takara, K., Matsui, D., Wada, K., Ichiba, T. & Nakasone, Y. (2002). New antioxidative phenolic glycosides isolated from Kokuto noncentrifuged cane sugar. Biosci. Biotec. Biochem., 66, 29–35.

Ulbricht, C., Bramwell, R., Catapang, M., Giese, N., Isaac, R., Le, T.D. & Zeolla, M.M. (2014). An evidence-based systematic review of chlorophyll by the natural standard research collaboration. J. Diet. Supplements, 11(2), 198–239. doi:10.3109/19390211.2013.859853

Vila, F.C.; Colombo, R.; Lira, T.O. & Yariwake, J.H. (2008). HPLC microfractionation of flavones and antioxidant (radical scavenging) activity of Saccharum officinarum L. J. Braz. Chem. Soc., 19(5), 903-908.

Xia, Y., Li, Y., Shen, X., Mizu, M., Furuta, T. & LI, C. (2017). Effect of dietary supplementation with sugar cane extract on meat quality and oxidative stability in finishing pigs. Animal Nutrition, 3(3), 295-299. doi.org/10.1016/j.aninu.2017.05.002

Xu, Z., Wang, C., Yan, H., Zhao, Z., You, L. & Ho, C.T. (2022). Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chem, 30, 373. doi: 10.1016 / j.foodchem.2021.131396

Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H. & Misawa, N. (1994). Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem, 58 (6), 1112-4. doi: 10.1271/bbb.58.1112.

Yoshikava, T., Toyokuni, S., Yamamoto, Y. & Naito, Y. (2000). Free radicals in chemistry, biology and medicine. OICA International London. doi:10.1093/acprof:oso/9780198717478.001.0001

Published

25/02/2022

How to Cite

MAIA, A. B. . Nutritional value of cane broth and nutraceutical potential of caná – cane broth´s fermented drink. Research, Society and Development, [S. l.], v. 11, n. 3, p. e33811326112, 2022. DOI: 10.33448/rsd-v11i3.26112. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26112. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences