Changes in enamel surface after use of nanoencapsulated fluoride for dental caries remineralization: an in vitro study
DOI:
https://doi.org/10.33448/rsd-v11i4.26176Keywords:
Dental caries; Toothpastes; Tooth remineralization; Fluoride; Nanotechnology.Abstract
Aim: To evaluate through an in vitro study surface changes on decayed enamel after the use of fluoridated dentifrices involving nanoencapsulated technology (NanoF). Methods: Forty blocks of human enamel were distributed among four groups (n = 10): 50% NanoF + 50% NaF (50% nF), 100% NanoF (100% nF), 100% NaF as the positive control (PC) and without fluoride as the negative control (NC). The specimens were subjected to a pH cycling model for 7 days. Surface microhardness (SMH), linear surface roughness (Ra) and area surface roughness (Sa) were measured before and after the carious lesion formation and at the end of the treatment. Percentages of surface microhardness recovery (%SMHR), altered Ra (%RaC) and altered Sa (%SaC) were calculated. The data were analyzed using the ANOVA test, repeated-measures ANOVA and Pearson's correlation test (p<0.05). Results: No significant differences among groups were found for Ra, Sa, %RaC or %SaC (p>0.05). Ra and Sa increased after treatment. A significant correlation was found between Ra and Sa. The PC dentifrice had the highest %SMHR, followed by 100% nF (p<0.05). In contrast, no surface remineralization was found in the 50% nF and NC groups. Conclusion: Enamel surface changes were found after the remineralizing treatment with 100% nF group. The majority of dentifrices with fluoride provided an increase in the roughness and surface microhardness. Nanotechnology is an innovative, promising method for the controlled release of fluoride and the remineralization of teeth with dental caries.
References
Ahmadian, E., Shani, S., Yazdani, J., Dizaj, S. M., & Shariji, S. (2018). Local treatment of the dental caries using nanomaterials. Biomedicine & Pharmacotherapy, 108, 443-447. https://doi.org/10.1016/j.biopha.2018.09.026.
Alexandria, A. K., Meckelburg, N. A., Puetter, U. T., Salles, J. T., Souza, I. P. R., & Maia, L. C. (2016). Do pediatric medicines induce topographic changes in dental enamel? Brazilian Oral Research, 30:S1806-83242016000100211. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0011.
Alves, V. F., Moreira, V. G., Soares, A. F., Albuquerque, L. S., Moura, H. S., Silva, A. O., & Sampaio, F. C. (2018). A randomized triple-blind crossover trial of a hydrocolloid-containing dentifrice as a controlled-release system for fluoride. Clinical Oral Investigations, 22(9), 3071-3077. https://doi.org/10.1007/s00784-018-2395-0.
Amaechi, B. T. (2019). Protocols to study dental caries in vitro: pH cycling models. In: Walker J (editor), Odontogenesis: Methods and Protocols (379-392). Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-9012-2_34
Ando, M., Fontana, M., Eckert, G. J., Arthur, R. A., Zhang, H., & Zero, D. T. (2018a). Objective and quantitative assessment of caries lesion activity. Journal of Dentistry, 78, 76-82. https://doi.org/10.1016/j.jdent.2018.08.009.
Ando, M., Shaikh, S., & Eckert, G. (2018b). Determination of Caries Lesion Activity: Reflection and Roughness for Characterization of Caries Progression. Operative Dentistry, 43(3), 301-306. https://doi.org/10.2341/16-236-L.
Buzalaf, M. A. R., Hannas, A. R., Magalhães, A. C., Rios, D., Honório, H. M., & Delbem, A. C. (2010). pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. Journal of Applied Oral Science, 18(4), 316–334. https://doi.org/10.1590/S1678-77572010000400002.
Cardoso, C. A. B., Mangueira, D. F. B., Olympio, K. P. K., Magalhães, A. C., Rios, D., Honório, H. M. & Buzalaf, M. A. R. (2014). The effect of pH and fluoride concentration of liquid dentifrices on caries progression. Clinical Oral Investigations, 18(3), 761-767. https://doi.org/10.1007/s00784-013-1031-2.
Cate, J. M. T., & Buzalaf, M. A. R. (2019). Fluoride Mode of Action: Once There Was an Observant Dentist. Journal of Dental Research, 98(7), 725-730. https://doi.org/10.1177/0022034519831604.
Farooq, I., & Bugshan, A. (2020). The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000 Research, 9, 171. https://doi.org/10.12688/f1000research.22499.3.
Gonzáles-cabezas, C., & Fernandez, C. E. (2018). Recent advances in remineralization therapies for caries lesions. Advances in Dental Research, 29(1), 55-59. https://doi.org/10.1177/0022034517740124.
Kanduti, D., Sterbenk, P., & Artnik, B. (2016). Fluoride: a review of use and effects on health. Materia Socio-medica, 28(2), 133-7. https://doi.org/10.5455/msm.2016.28.133-137.
Lavôr, J. R., Fernandes, N. L. S., de Sousa, E. B. G., da Cunha, J. L., Meira, I. A., Sampaio, F. C., & Oliveira, A. F. B. (2020). Nanoencapsulated fluoride as a remineralization option for dental erosion: an in vitro study. Acta Odontologica Scandinavica, 79(5), 321-326. https://doi.org/10.1080/00016357.2020.1849793
Lippert, F., & Gill, K. K. (2019). Carious lesion remineralizing potential of fluoride- and calcium-containing toothpastes. Journal of the American Dental Association, 150(5), 345-351. https://doi.org/10.1016/j.adaj.2018.11.022.
Ma, X., Lin, X., Zhong, T., & Xie, F. (2019). Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: a systematic review and meta-analysis. BMC Oral Health, 19(1), 295. https://doi.org/10.1186/s12903-019-0977-0.
Moreira, V. G. (2017). Clinical trial of bioavailability of fluoride in controlled release system dentifrices. [Master’s Thesis]. https://sig-arq.ufpb.br/arquivos/2017209023f1f95260044bf31313ab6a/Vanderlcia_Gomes_Moreira_DISSERTAO.pdf . Accessed 15 Mar 2021.
Nguyen, S., & Hiorth, M. (2015). Advanced Drug Delivery Systems for Local Treatment of the Oral Cavity. Therapeutic Delivery, 6(5), 595-608.https://doi.org/10.4155/tde.15.5
Nguyen, S., Escudero, C., Sediqi, N., Smistad, G., & Hiorth, M. (2017). Fluoride loaded polymeric nanopacticles for dental delivery. European Journal of Pharmaceutical Sciences, 104, 326-334. https://doi.org/10.1016/j.ejps.2017.04.004.
Oliveira, A. F. B., Sousa, E. B. G., Fernandes, N. L. S., Meira, I. A., Lavôr, J. R., Chaves, A. M. B. P., & Sampaio, F. C. (2021). Effect of treatment time on performance of nano-encapsulated fluoride dentifrices for remineralization of initial carious lesions: an in vitro study. Acta Odontologica Latinoamericana. 34(1), 56-62.
Paula, A. B. P., Fernandes, A. R., Coelho, A. S., Marto, C. M., Ferreira, M. M., Caramelo, F. & Carrilho, E. (2017). Therapies for White spot lesions- a systematic review. The Journal of Evidence-Based Dental Practice, 17(1), 23-38. https://doi.org/10.1016/j.jebdp.2016.10.003
Piñón-Segundo, E., Mendoza Muñoz, N., & Quintanar, D. (2019). Nanoparticles as Dental Drug-Delivery Systems. In K. Subramani, & W. Ahmed (Eds.), Nanobiomaterials in Clinical Dentistry (pp.567-593). https://doi.org/10.1016/B978-0-12-815886-9.00023-1
Pitts, N. B., Zero, D. T., Marsh, P. D., Ekstrand, K., Weintraub, J. A., Ramos-gomez, F. & Ismail, A. (2017). Dental caries. Nature Reviews, 3:17030. doi: 10.1038/nrdp.2017.30.
Queiroz, C. S., Hara, A. T., Paes Leme, A. F., & Cury, J. A. (2008). pH-Cycling models to evaluate the effect of low fluoride dentifrice on enamel De- and remineralization. Brazilian Dental Journal, 19(1), 21-7. https://doi.org/10.1590/S0103-64402008000100004.
Reis, P. Q. R., Calazans, F. S., Poubel, L. A., Silva, E. M., Alves, W. V., & Barceleiro, M. O. (2017). Avaliação in vitro do efeito de um dentifrício à base de nanohidroxiapatita na rugosidade de superfície do esmalte dental bovino. Revista Brasileira de Odontologia, 74(2), 133-137. https://doi.org/10.18363/rbo.v74n2.p.133
Sampaio, F., Fernandes, N. L., Sousa, E., Costa, J. G. S., Elbert, J. J., & Oliveira, A. (2020). Silicate-based Dentifrices Against Enamel Demineralization: In vitro Study [Conference presentation]. https://iadr.abstractarchives.com/abstract/20iags-3321441/silicate-based-dentifrices-against-enamel-demineralization-in-vitro-study.
Sleibi, A., Tappuni, A. R., Davis, G. R., Anderson, P., & Baysan, A. (2018). Comparison of efficacy of dental varnish containing fluoride either with CPP-ACP or bioglass on root caries: Ex vivo study. Journal of Dentistry, 73, 91-96.https://doi.org/10.1016/j.jdent.2018.04.009.
Soares, I. A., Leite, P. K. B. S., Farias, O. R., Lemos, G. A., Batista, A. U. D., & Montenegro, R. V. (2019). Polishing Methods Influence on Color Stability and Roughness of 2 Provisional Prosthodontic Materials. Journal of Prosthodontics, 28(5), 564-571. https://doi.org/10.1111/jopr.13062.
Tenuta, L. M. A., & Cury, J. A. (2013). Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. Monographs in Oral Science, 23, 108–124 https://doi.org/10.1159/000350479.
Tomaz, P. L. S, Sousa, L. A., Aguiar, K. F., Oliveira, T. S., Matochek, M. H. M., Polassi, M. R., & D’Alpino, P. H. P., (2020). Effects of 1450-ppm Fluoride-cointaning toothpastes associated with boosters on the enamel remineralization and surface roughness after cariogenic challenge. European Journal of Dentistry, 14(1), 161-170. doi: 10.1055/s-0040-1705072.
Vieira, A., Delbem, A. C. B., Sassaki, K. T., Rodrigues, E., Cury, J. A., & Cunha, R. F. (2005). Fluoride dose response in pH-cycling models using bovine enamel. Caries Research, 39(6), 514-20.https://doi.org/10.1159/000088189.
Vyavhare, S., Sharma, D., & Kulkarni, V. (2015). Effect of Three Different Pastes on Remineralization of Initial Enamel Lesion: In Vitro Study. Journal of Clinical Pediatric Dentistry, 39(2), 149-60.https://doi.org/10.17796/jcpd.39.2.yn2r54nw24l03741.
Yu, O. Y., Zhao, I. S., Mei, M. L., Lo, E. C., & Chu, C. H. (2017). A Review of the Common Models Used in Mechanistic Studies on Demineralization-Remineralization for Cariology Research. Dentistry Journal (Basel), 5(2): 20.https://doi.org/10.3390/dj5020020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Juliellen Luiz da Cunha; Elizabeth Barreto Galvão de Sousa; Nayanna Lana Soares Fernandes; Ingrid Andrade Meira; Juliane Rolim de Lavôr; Thiago Isidro Vieira; Ana Maria Barros Chaves Pereira; Fabio Correia Sampaio; Andressa Feitosa Bezerra de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.