Changes in enamel surface after use of nanoencapsulated fluoride for dental caries remineralization: an in vitro study

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.26176

Keywords:

Dental caries; Toothpastes; Tooth remineralization; Fluoride; Nanotechnology.

Abstract

Aim: To evaluate through an in vitro study surface changes on decayed enamel after the use of fluoridated dentifrices involving nanoencapsulated technology (NanoF). Methods: Forty blocks of human enamel were distributed among four groups (n = 10): 50% NanoF + 50% NaF (50% nF), 100% NanoF (100% nF), 100% NaF as the positive control (PC) and without fluoride as the negative control (NC). The specimens were subjected to a pH cycling model for 7 days. Surface microhardness (SMH), linear surface roughness (Ra) and area surface roughness (Sa) were measured before and after the carious lesion formation and at the end of the treatment. Percentages of surface microhardness recovery (%SMHR), altered Ra (%RaC) and altered Sa (%SaC) were calculated. The data were analyzed using the ANOVA test, repeated-measures ANOVA and Pearson's correlation test (p<0.05). Results: No significant differences among groups were found for Ra, Sa, %RaC or %SaC (p>0.05). Ra and Sa increased after treatment. A significant correlation was found between Ra and Sa. The PC dentifrice had the highest %SMHR, followed by 100% nF (p<0.05). In contrast, no surface remineralization was found in the 50% nF and NC groups. Conclusion: Enamel surface changes were found after the remineralizing treatment with 100% nF group. The majority of dentifrices with fluoride provided an increase in the roughness and surface microhardness. Nanotechnology is an innovative, promising method for the controlled release of fluoride and the remineralization of teeth with dental caries.

Author Biographies

Juliellen Luiz da Cunha, Federal University of Paraíba

Undergraduate Dentistry Course, Health Sciences Centre, Federal University of Paraíba - UFPB, João Pessoa/Paraíba, Brazil.

Elizabeth Barreto Galvão de Sousa, Federal University of Paraíba

Undergraduate Dentistry Course, Health Sciences Centre, Federal University of Paraíba - UFPB, João Pessoa/Paraíba, Brazil.

Nayanna Lana Soares Fernandes, Federal University of Paraíba

Department of Clinical and Social Dentistry, Federal University of Paraíba - UFPB, João Pessoa/Paraíba, Brazil.

Ingrid Andrade Meira, University of Campinas

Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas- UNICAMP, Piracicaba/São Paulo, Brazil.

Thiago Isidro Vieira, Federal University of Paraíba

Department of Morphology, Federal University of Paraíba - UFPB, João Pessoa/Paraíba, Brazil.

Ana Maria Barros Chaves Pereira, Federal University of Paraíba

Department of Morphology, Federal University of Paraíba - UFPB, João Pessoa/Paraíba, Brazil

Fabio Correia Sampaio, Federal University of Paraíba

Department of Clinic and Social Dentistry, Federal University of Paraiba - UFPB, João Pessoa/Paraiba, Brazil.

Andressa Feitosa Bezerra de Oliveira, Federal University of Paraíba

Department of Morphology, Federal University of Paraíba - UFPB, João Pessoa/Paraíba, Brazil.

References

Ahmadian, E., Shani, S., Yazdani, J., Dizaj, S. M., & Shariji, S. (2018). Local treatment of the dental caries using nanomaterials. Biomedicine & Pharmacotherapy, 108, 443-447. https://doi.org/10.1016/j.biopha.2018.09.026.

Alexandria, A. K., Meckelburg, N. A., Puetter, U. T., Salles, J. T., Souza, I. P. R., & Maia, L. C. (2016). Do pediatric medicines induce topographic changes in dental enamel? Brazilian Oral Research, 30:S1806-83242016000100211. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0011.

Alves, V. F., Moreira, V. G., Soares, A. F., Albuquerque, L. S., Moura, H. S., Silva, A. O., & Sampaio, F. C. (2018). A randomized triple-blind crossover trial of a hydrocolloid-containing dentifrice as a controlled-release system for fluoride. Clinical Oral Investigations, 22(9), 3071-3077. https://doi.org/10.1007/s00784-018-2395-0.

Amaechi, B. T. (2019). Protocols to study dental caries in vitro: pH cycling models. In: Walker J (editor), Odontogenesis: Methods and Protocols (379-392). Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-9012-2_34

Ando, M., Fontana, M., Eckert, G. J., Arthur, R. A., Zhang, H., & Zero, D. T. (2018a). Objective and quantitative assessment of caries lesion activity. Journal of Dentistry, 78, 76-82. https://doi.org/10.1016/j.jdent.2018.08.009.

Ando, M., Shaikh, S., & Eckert, G. (2018b). Determination of Caries Lesion Activity: Reflection and Roughness for Characterization of Caries Progression. Operative Dentistry, 43(3), 301-306. https://doi.org/10.2341/16-236-L.

Buzalaf, M. A. R., Hannas, A. R., Magalhães, A. C., Rios, D., Honório, H. M., & Delbem, A. C. (2010). pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. Journal of Applied Oral Science, 18(4), 316–334. https://doi.org/10.1590/S1678-77572010000400002.

Cardoso, C. A. B., Mangueira, D. F. B., Olympio, K. P. K., Magalhães, A. C., Rios, D., Honório, H. M. & Buzalaf, M. A. R. (2014). The effect of pH and fluoride concentration of liquid dentifrices on caries progression. Clinical Oral Investigations, 18(3), 761-767. https://doi.org/10.1007/s00784-013-1031-2.

Cate, J. M. T., & Buzalaf, M. A. R. (2019). Fluoride Mode of Action: Once There Was an Observant Dentist. Journal of Dental Research, 98(7), 725-730. https://doi.org/10.1177/0022034519831604.

Farooq, I., & Bugshan, A. (2020). The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000 Research, 9, 171. https://doi.org/10.12688/f1000research.22499.3.

Gonzáles-cabezas, C., & Fernandez, C. E. (2018). Recent advances in remineralization therapies for caries lesions. Advances in Dental Research, 29(1), 55-59. https://doi.org/10.1177/0022034517740124.

Kanduti, D., Sterbenk, P., & Artnik, B. (2016). Fluoride: a review of use and effects on health. Materia Socio-medica, 28(2), 133-7. https://doi.org/10.5455/msm.2016.28.133-137.

Lavôr, J. R., Fernandes, N. L. S., de Sousa, E. B. G., da Cunha, J. L., Meira, I. A., Sampaio, F. C., & Oliveira, A. F. B. (2020). Nanoencapsulated fluoride as a remineralization option for dental erosion: an in vitro study. Acta Odontologica Scandinavica, 79(5), 321-326. https://doi.org/10.1080/00016357.2020.1849793

Lippert, F., & Gill, K. K. (2019). Carious lesion remineralizing potential of fluoride- and calcium-containing toothpastes. Journal of the American Dental Association, 150(5), 345-351. https://doi.org/10.1016/j.adaj.2018.11.022.

Ma, X., Lin, X., Zhong, T., & Xie, F. (2019). Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: a systematic review and meta-analysis. BMC Oral Health, 19(1), 295. https://doi.org/10.1186/s12903-019-0977-0.

Moreira, V. G. (2017). Clinical trial of bioavailability of fluoride in controlled release system dentifrices. [Master’s Thesis]. https://sig-arq.ufpb.br/arquivos/2017209023f1f95260044bf31313ab6a/Vanderlcia_Gomes_Moreira_DISSERTAO.pdf . Accessed 15 Mar 2021.

Nguyen, S., & Hiorth, M. (2015). Advanced Drug Delivery Systems for Local Treatment of the Oral Cavity. Therapeutic Delivery, 6(5), 595-608.https://doi.org/10.4155/tde.15.5

Nguyen, S., Escudero, C., Sediqi, N., Smistad, G., & Hiorth, M. (2017). Fluoride loaded polymeric nanopacticles for dental delivery. European Journal of Pharmaceutical Sciences, 104, 326-334. https://doi.org/10.1016/j.ejps.2017.04.004.

Oliveira, A. F. B., Sousa, E. B. G., Fernandes, N. L. S., Meira, I. A., Lavôr, J. R., Chaves, A. M. B. P., & Sampaio, F. C. (2021). Effect of treatment time on performance of nano-encapsulated fluoride dentifrices for remineralization of initial carious lesions: an in vitro study. Acta Odontologica Latinoamericana. 34(1), 56-62.

Paula, A. B. P., Fernandes, A. R., Coelho, A. S., Marto, C. M., Ferreira, M. M., Caramelo, F. & Carrilho, E. (2017). Therapies for White spot lesions- a systematic review. The Journal of Evidence-Based Dental Practice, 17(1), 23-38. https://doi.org/10.1016/j.jebdp.2016.10.003

Piñón-Segundo, E., Mendoza Muñoz, N., & Quintanar, D. (2019). Nanoparticles as Dental Drug-Delivery Systems. In K. Subramani, & W. Ahmed (Eds.), Nanobiomaterials in Clinical Dentistry (pp.567-593). https://doi.org/10.1016/B978-0-12-815886-9.00023-1

Pitts, N. B., Zero, D. T., Marsh, P. D., Ekstrand, K., Weintraub, J. A., Ramos-gomez, F. & Ismail, A. (2017). Dental caries. Nature Reviews, 3:17030. doi: 10.1038/nrdp.2017.30.

Queiroz, C. S., Hara, A. T., Paes Leme, A. F., & Cury, J. A. (2008). pH-Cycling models to evaluate the effect of low fluoride dentifrice on enamel De- and remineralization. Brazilian Dental Journal, 19(1), 21-7. https://doi.org/10.1590/S0103-64402008000100004.

Reis, P. Q. R., Calazans, F. S., Poubel, L. A., Silva, E. M., Alves, W. V., & Barceleiro, M. O. (2017). Avaliação in vitro do efeito de um dentifrício à base de nanohidroxiapatita na rugosidade de superfície do esmalte dental bovino. Revista Brasileira de Odontologia, 74(2), 133-137. https://doi.org/10.18363/rbo.v74n2.p.133

Sampaio, F., Fernandes, N. L., Sousa, E., Costa, J. G. S., Elbert, J. J., & Oliveira, A. (2020). Silicate-based Dentifrices Against Enamel Demineralization: In vitro Study [Conference presentation]. https://iadr.abstractarchives.com/abstract/20iags-3321441/silicate-based-dentifrices-against-enamel-demineralization-in-vitro-study.

Sleibi, A., Tappuni, A. R., Davis, G. R., Anderson, P., & Baysan, A. (2018). Comparison of efficacy of dental varnish containing fluoride either with CPP-ACP or bioglass on root caries: Ex vivo study. Journal of Dentistry, 73, 91-96.https://doi.org/10.1016/j.jdent.2018.04.009.

Soares, I. A., Leite, P. K. B. S., Farias, O. R., Lemos, G. A., Batista, A. U. D., & Montenegro, R. V. (2019). Polishing Methods Influence on Color Stability and Roughness of 2 Provisional Prosthodontic Materials. Journal of Prosthodontics, 28(5), 564-571. https://doi.org/10.1111/jopr.13062.

Tenuta, L. M. A., & Cury, J. A. (2013). Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. Monographs in Oral Science, 23, 108–124 https://doi.org/10.1159/000350479.

Tomaz, P. L. S, Sousa, L. A., Aguiar, K. F., Oliveira, T. S., Matochek, M. H. M., Polassi, M. R., & D’Alpino, P. H. P., (2020). Effects of 1450-ppm Fluoride-cointaning toothpastes associated with boosters on the enamel remineralization and surface roughness after cariogenic challenge. European Journal of Dentistry, 14(1), 161-170. doi: 10.1055/s-0040-1705072.

Vieira, A., Delbem, A. C. B., Sassaki, K. T., Rodrigues, E., Cury, J. A., & Cunha, R. F. (2005). Fluoride dose response in pH-cycling models using bovine enamel. Caries Research, 39(6), 514-20.https://doi.org/10.1159/000088189.

Vyavhare, S., Sharma, D., & Kulkarni, V. (2015). Effect of Three Different Pastes on Remineralization of Initial Enamel Lesion: In Vitro Study. Journal of Clinical Pediatric Dentistry, 39(2), 149-60.https://doi.org/10.17796/jcpd.39.2.yn2r54nw24l03741.

Yu, O. Y., Zhao, I. S., Mei, M. L., Lo, E. C., & Chu, C. H. (2017). A Review of the Common Models Used in Mechanistic Studies on Demineralization-Remineralization for Cariology Research. Dentistry Journal (Basel), 5(2): 20.https://doi.org/10.3390/dj5020020.

Downloads

Published

27/03/2022

How to Cite

CUNHA, J. L. da .; SOUSA, E. B. G. de .; FERNANDES, N. L. S.; MEIRA, I. A.; LAVÔR, J. R. de; VIEIRA, T. I.; PEREIRA, A. M. B. C.; SAMPAIO, F. C. .; OLIVEIRA, A. F. B. de . Changes in enamel surface after use of nanoencapsulated fluoride for dental caries remineralization: an in vitro study . Research, Society and Development, [S. l.], v. 11, n. 4, p. e7611426176, 2022. DOI: 10.33448/rsd-v11i4.26176. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26176. Acesso em: 22 dec. 2024.

Issue

Section

Health Sciences