Statistical analysis applied to traffic management at signalized intersections

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26178

Keywords:

Intersection; Delay; Test Mann-Whitney; Queue length; ANOVA.

Abstract

Traffic light intersections tend to be the most problematic places in the road systems, as they present high levels of congestion, accidents, air pollution and high economic losses. With this, the methods and models that provide knowledge of the efficiency parameters of the operation become more and more protagonists in the management of urban traffic. However, the availability of different methods and models can lead to divergence between the parameters within the same intersection. Thus, this study aims to analyze how the application of statistical tests allows the identification of relevant instruments for traffic management. The methodology consists of using two VISSIM and Simtraffic simulators, and the Webster method to obtain the parameters of operation efficiency, average delay and the queue length of the tail of a traffic light intersection with three accesses. For the analysis of the parameters, taking into account different methods and models, in three traffic light cycles, the statistical tests of ANOVA and Mann-Whitney were applied. The results show the importance of applying these tests to improve urban traffic management, since these tests determine whether the operational efficiency parameters differ according to the scenario, methods and software applied.

Author Biography

Heraldo Nunes Pitanga, Universidade Federal de Juiz de Fora

He holds a degree in Civil Engineering from the Federal University of Viçosa (1993-2000), as well as a Master's degree in Geotechnics from the same institution (2000-2002). He holds a PhD in Geotechnics from the School of Engineering of São Carlos - University of São Paulo (2003-2008) and a Ph.D. in Geosciences from the Joseph Fourier University - Grenoble - France (2007-2008). He is a Post-Doctor at the School of Engineering of São Carlos - University of São Paulo (2008) and at the Federal University of Viçosa (2014). He is currently Associate Professor II of the Civil Engineering course at the Federal University of Juiz de Fora (UFJF-MG), being linked to the Graduate Program in Civil Engineering at the Federal University of Viçosa (PPGEC/UFV). He has experience in Civil Engineering, with emphasis on Environmental Geotechnics, Geosynthetics and Transport Infrastructure, working mainly on the following topics: paving, transport systems, geosynthetics, environmental geotechnics, soil stabilization, sustainability in civil construction, construction. He is a PQ-2 research productivity fellow.

References

Araújo, A. M., & Castro, M. M. (2018). Calibração do modelo de aceitação de brechas em interseções urbanas com o microssimulador de tráfego VISSIM. Transportes, 26(3), 25–38. doi:10.14295/transportes.v26i3.1603

ATAC. (2003). Signal coordination strategies Final Report. Grand Forks/East grand forks metropolitan planning. Fargo, North Dakota.

Ayala, R. J. L. E (2013). Procedimento para identificação dos principais parâmetros dos microssimuladores a serem considerados no processo de calibração. Dissertação de mestrado, Universidade de Brasília, Faculdade de Tecnologia, Brasília.

Bloomberg, L., & Dale, J. (2000). Comparison of VISSIM and CORSIM traffic simulation models on a congested network. Transportation Research Record, (1727), 52–60. doi:10.3141/1727-07

Cal, R., Reyes, M., & Cárdenas, J. (2010). Ingeniería de Tránsito fundamentos y aplicaciones. Félix Varela, Ed 8va. México.

Chaudhry, A. (2015). Analysis of queue characteristics at signalized intersections near highway-railroad grade crossing. Dissertation, Wayne State University, Detroit, Michigan.

Chaudhry, M. S. & Ranjitkar, P. (2013). Delay Estimation at Signalized Intersections with Variable Queue Discharge Rate. Journal of the Eastern Asia Society for Transportation Studies, 10(0).

Datta, S., Rokade, S., & Rajput, S. P. S. (2020). Delay and driver turning time evaluation for uncontrolled intersections under diverse traffic operational situations. Transportation Engineering, 2(May), 100031. doi:10.1016/j.treng.2020.100031

De Oliveira, S. (2016) Calibração de modelos de microssimulação de tráfego para análise de interseções urbanas. Dissertação de mestrado, Instituto Politécnico de Viseu.

Departamento Nacional de Infraestrutura de Transportes. Manual de estudos de tráfego. Instituto de Pesquisas Rodoviárias - IPR 384 (2006). Rio de Janeiro.

Dion, F., Rakha, H., & Kang, Y. S. (2004). Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections. Transportation Research Part B: Methodological, 38(2), 99–122. https://doi.org/10.1016/S0191-2615(03)00003-1.

Dowling, R., Skabardonis, A., & Alexiadis, V. (2004). Traffic Analysis Toolbox Volume III : Guidelines for Applying Traffic Microsimulation Modeling Software. Rep. No. FHWA-HRT-04-040, U.S. DOT, Federal Highway Administration, Washington, D.C (Vol. III).

Elefteriadou, L. (2014). An Introduction to Traffic Flow Theory (Springer). Vol. 84.

Jíménez, J. A., Medina, J. M., Figueroa, V., & Tapia, M. (2015). Simulación con Promodel para la sincronización de semáforos. Academia Journals, 1, 1187–1192.

Khosla, K., & J. C. Williams (2006). Saturation flow at signalized intersections during longer green time. Transportation Research Record: Journal of the Transportation Research Board, 1978, 61-67. doi: 10.3141/1978-10.

Koonce, P., Rodegerdts, L., Lee, K., Quayle, S., Beaird, S., Braud, C., Bonneson, J., Tarnoff, P., & Urbanik, T. (2008) Traffic Signal Timimg Manual (FHWA-HOP-08-024). Department of Transportation, Federal Highway Administration

Kumar, R., & Dhinakaran, G. (2013). Estimation of delay at signalized intersections for mixed traffic conditions of a developing country. International Journal of Civil Engineering, 11(1), 53–59.

Lee, M. (2010). Performance Analysis of the Dowling Multi-lane Roundabouts in Anchorage, Alaska University Transportation Center. Alaska Department of Transportation and Public Facilities, Alaska.

Ma, W., Wan, L., Yu, C., Zou, L., & Zheng, J. (2020). Multi-objective optimization of traffic signals based on vehicle trajectory data at isolated intersections. Transportation Research Part C: Emerging Technologies, 120(September), 102821. doi:10.1016/j.trc.2020.102821

Mahmud, S. M. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2019) Micro-simulation modelling for traffic safety: A review and potential application to heterogeneous traffic environment. IATSS Research, 43(1), 27–36. doi:10.1016/j.iatssr.2018.07.002

Nyame-Baafi, E., Adams, C. A., & Osei, K. K. (2018). Volume warrants for major and minor roads left-turning traffic lanes at unsignalized T-intersections: A case study using VISSIM modelling. Journal of Traffic and Transportation Engineering (English Edition), 5(5), 417–428. doi:10.1016/j.jtte.2018.01.005

Obelheiro, M. R., Oliveira, M. L., & Cybis, H. B. B. (2010). Avaliação da influência do tipo de cobrança e da composição do tráfego sobre o desempenho operacional de praças de pedágio. Transportes, 18(3), 25–33. doi:10.14295/transportes.v18i3.448

Oskarbski, J., Guminska, L., Miszewski, M., & Oskarbska, I. (2016). Analysis of Signalized Intersections in the Context of Pedestrian Traffic. Transp. Res. Procedia, 14, 2138–2147. doi: 10.1016/j.trpro.2016.05.229.

Osorio, C., Chen, X., Marsico, M., Talas, M., Gao, J., & Zhang, S. (2015). Reducing Gridlock Probabilities via Simulation-based Signal Control. Transportation Research Procedia, 6(June 2014), 101–110. doi:10.1016/j.trpro.2015.03.009

Otković, I. I., Deluka-Tibljaš, A., & Šurdonja, S. (2020). Validation of the calibration methodology of the micro-simulation traffic model. Transportation Research Procedia, 45(2019), 684–691. doi:10.1016/j.trpro.2020.02.110

Park, B., & Qi, H. (2005). Development and evaluation of a procedure for the calibration of simulation models. Transportation Research Record, (1934), 208–217. doi:10.3141/1934-22.

PTV AG Corporation. (2016). Vissim 9 user manual. Karlsruhe, Germany.

Raval, N. G., & Gundaliya, P. J. (2012). Modification of Webster’s delay formula using modified saturation flow model for non-lane based heterogeneous traffic condition. Highway Research Journal, 5(1).

Saha, A., Chandra, S., & Ghosh, I. (2016). A Comparison of Delay at Signal Controlled Intersections Based on Different Methods. 12th Transportation Planning and Implementation Methodologies for Developing, (March 2017).

Shaaban, K. (2005). Right Turn Split: A New Design to Alleviate the Weaving Problem on Arterial Streets. Electronic Theses and Dissertations, 2004-2019. Department of Civil and Environmental Engineering. College of Engineering and Computer Science. University of Central Florida.

Shaaban, K., & Kim, I. (2015). Comparison of SimTraffic and VISSIM microscopic traffic simulation tools in modeling roundabouts. Procedia Computer Science, 52(1), 43–50. doi:10.1016/j.procs.2015.05.016

Shaaban, K., & Radwan, E. (2005). A Calibration and Validation Procedure for Microscopic Simulation Model : A Case Study of SimTraffic for Arterial Streets. TRB (Ed), TRB 2005 Annual Meeting. Transportation Research Board, National Research Council, Washington, Orlando.

Steven L. Jones, Andrew J. Sullivan, Cheekoti, N., Michael D. Anderson, & Dillip Malave. (2004). Traffic simulation software comparison study. UTCA Report 02217 (Vol. 2217). Alabama. doi:10.1.1.117.6974

Sun, D., Zhang, L., & Chen, F. (2013). Comparative study on simulation performances of CORSIM and VISSIM for urban street network. Simulation Modelling Practice and Theory, 37, 18–29. doi:10.1016/j.simpat.2013.05.007

Teixeira, C. A. (2008). Calibração de Modelos Microscópicos de Simulação de Tráfego em Redes Urbanas Cristina. Dissertação de mestrado. Faculdade de engenharia. Universidade do Porto.

Tianzi, C., Shaochen, J., & Hongxu, Y. (2013). Comparative Study of VISSIM and SIDRA on Signalized Intersection. Social and Behavioral Sciences, 96(Cictp), 2004–2010. doi:10.1016/j.sbspro.2013.08.226

Torquato, R. M., Maciel, M., & de Castro Neto, M. (2020). Estimação do efeito de motocicletas na capacidade de interseções semaforizadas. Transportes, 28(5), 220–234.

Trafficware, L. (2017). Synchro Studio 10: Synchro plus SimTraffic and 3D Viewer. Trafficware, LLC. 522 Gillingham Sugar Land, TX 77487, United States of America.

TRB (2010). HCM 2010: Highway Capacity Manual. 5th Edition. Transportation Research Board - National Research Council. Washington, D.C.

Wang, C., Xu, C., Xia, J., Qian, Z., & Lu, L. (2018). A combined use of microscopic traffic simulation and extreme value methods for traffic safety evaluation. Transportation Research Part C: Emerging Technologies, 90 (December 2017), 281–291. doi:10.1016/j.trc.2018.03.011

Wang, Z., Zhu, L., Ran, B., & Jiang, H. (2020). Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves. Transportation Research Part B: Methodological, 141, 59–71. doi:10.1016/j.trb.2020.08.009

Webster, F. (1964). Traffic signal settings, road research technical paper no. 39”. Road Research Laboratory. Londres.

Yizheng, W., Jian, S., & Chunlu, P. (2012). Comparative Study of Micro-simulation Performances for Urban Road Network between Vissim and Corsim. Traffic Information and Safety, 30(4), 116–120.

Published

07/02/2022

How to Cite

MENENDEZ , O. H. .; SILVA, N. A. B. .; PITANGA, H. N. Statistical analysis applied to traffic management at signalized intersections. Research, Society and Development, [S. l.], v. 11, n. 3, p. e0511326178, 2022. DOI: 10.33448/rsd-v11i3.26178. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26178. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings