Does the composition of toothpaste affect the tooth resistance to erosion/abrasion processes?

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.26243

Keywords:

Compound; Dentifrices; Tooth abrasion; Demineralization; Fluorides.

Abstract

This study aimed to evaluate the tooth after brushing with toothpaste containing or not active compounds and with different fluoride concentrations after erosion to establish and compare the effectiveness of each dentifrice in its use. Enamel, E (n=36) and dentin, D (n=36) bovine specimens were treated with artificial saliva (AS - control), fluoridated dentifrice (FD), 8% arginine (AR), and calcium silicate (CS). The samples (n=72) were subjected to cycles of demineralization (orange juice) followed by remineralization (saliva) and then tooth brushing (AR, FD and CS). The above cycle was repeated 3´/day for five days. Micro energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF), roughness testing and scanning electron microscopy (SEM) were performed. The mean of roughness values (Ra, μm) were E-AS, 0.20; E-FD, 0.15; E-AR, 0.18; E-CS, 0.18; D-AS, 0.31; D-FD, 0.30; D-AR, 0.37; D-CS, 0.44. The SEM images showed a clear loss of tooth substance in AS and FD treatments. A significant positive mineral variation was observed on the dentin after brushed with AR (p<0.05). The FD dentifrice minimized the erosive effects of the orange juice. Arginine and calcium silicate could improve dental protection by the deposition of a surface layer of deposits. Different active compounds resulted in diverse degrees of protection regarding the type of substrate. The high concentration of fluoride and the inclusion of active compounds improves the dentifrice protection level.

References

Aguiar, J. D., Medeiros, I. S., Souza Junior, M. H. S., & Loretto, S. C. (2017). Influence of the extended use of desensitizing toothpastes on dentin bonding, microhardness and roughness. Brazilian dental journal, 28(3), 346-353.

Bartlett, D. (2006). Intrinsic causes of erosion. In Dental Erosion. (Vol.20, pp.119-139), Karger Publishers.

Berkathullah, M., Farook, M. S., & Mahmoud, O. (2018). The Effectiveness of Remineralizing Agents on Dentinal Permeability. BioMed research international, 2018.

Crastechini, E., Borges, A., & Torres, C. (2018). Effect of Remineralizing Gels on Microhardness, Color and Wear Susceptibility of Bleached Enamel. Operative dentistry.

Crastechini, E., Borges, A., & Torres, C. (2019). Effect of Remineralizing Gels on Microhardness, Color and Wear Susceptibility of Bleached Enamel. Operative dentistry, 44(1), 76-87.

de Queiroz, A. S., dos Santos, I. R., da Mota Martins, V., de Oliveira Andrade, C. M., Dietrich, L., Nascimento, F., & dos Reis, T. A. (2021). A influência do dentifrício na abrasividade da estrutura dentinária: uma revisão narrativa. Research, Society and Development, 10(14), e210101421985-e210101421985.

Faller, R. V., Eversole, S. L., & Tzeghai, G. E. (2011). Enamel protection: a comparison of marketed dentifrice performance against dental erosion. American journal of dentistry, 24(4), 205.

Featherstone, J., Cutress, T., Rodgers, B., & Dennison, P. (1982). Remineralization of artificial caries-like lesions in vivo by a self-administered mouthrinse or paste. Caries Research, 16(3), 235-242.

Ferreira, S. S., Scaramucci, T., Hara, A. T., Aoki, I. V., & Sobral, M. A. P. (2015). Supplementation of an Orange Juice with Dietary Proteins to Prevent Enamel and Dentin Erosion. Brazilian dental journal, 26(3), 263-267.

Fita, K., & Kaczmarek, U. (2016). The Impact of Selected Fluoridated Toothpastes on Dental Erosion in Profilometric Measurement. Advances in clinical and experimental medicine: official organ Wroclaw Medical University, 25(2), 327-333.

Ganss, C., Klimek, J., Brune, V., & Schürmann, A. (2004). Effects of two fluoridation measures on erosion progression in human enamel and dentine in situ. Caries Research, 38(6), 561-566.

Gomes, R. N. S., Bhattacharjee, T. T., Carvalho, L. F. C., & Soares, L. E. S. (2017). Fast monitoring of tooth erosion caused by medicaments used in the treatment of respiratory diseases by ATR-FTIR and μ-EDXRF analysis. Lasers in medical science, 1-10.

Gomes, R. N. S., Bhattacharjee, T. T., Carvalho, L. F. C., & Soares, L. E. S. (2018). ATR‐FTIR spectroscopy and μ‐EDXRF spectrometry monitoring of enamel erosion caused by medicaments used in the treatment of respiratory diseases. Microscopy Research and Technique, 81(2), 220-227.

Gomes, R. N. S., Bhattacharjee, T. T., Carvalho, L. F. C., & Soares, L. E. S. (2019). Adverse effects of respiratory disease medicaments and tooth brushing on teeth: A scanning electron microscopy, X‐ray fluorescence and infrared spectroscopy study. Microscopy Research and Technique.

Ionta, F. Q., dos Santos, N. M., Mesquita, I. M., Dionísio, E. J., Cruvinel, T., Honório, H. M., & Rios, D. (2019). Is the dentifrice containing calcium silicate, sodium phosphate, and fluoride able to protect enamel against chemical mechanical wear? An in situ/ex vivo study. Clinical oral investigations, 1-8.

João-Souza, S. H., Scaramucci, T., Borges, A. B., Lussi, A., Carvalho, T. S., & Aranha, A. C. C. (2019). Influence of desensitizing and anti-erosive toothpastes on dentine permeability: An in vitro study. Journal of dentistry, 89, 103176.

Joiner, A., Schäfer, F., Naeeni, M. M., Gupta, A. K., & Zero, D. T. (2014). Remineralisation effect of a dual-phase calcium silicate/phosphate gel combined with calcium silicate/phosphate toothpaste on acid-challenged enamel in situ. Journal of dentistry, 42, S53-S59.

Kyaw, K., Otsuki, M., Segarra, M., Hiraishi, N., & Tagami, J. (2018). Effect of Calcium-phosphate Desensitizers on Staining Susceptibility of Acid-eroded Enamel. Operative dentistry.

Lombardini, M., Ceci, M., Colombo, M., Bianchi, S., & Poggio, C. (2014). Preventive effect of different toothpastes on enamel erosion: AFM and SEM studies. Scanning: The Journal of Scanning Microscopies, 36(4), 401-410.

Lussi, A., & Jaeggi, T. (2006). Chemical factors. In Dental Erosion (Vol. 20, pp. 77-87): Karger Publishers.

Lussi, A., Schlüter, N., Rakhmatullina, E., & Ganss, C. (2011). Dental erosion–an overview with emphasis on chemical and histopathological aspects. Caries Research, 45(Suppl. 1), 2-12.

Magalhaes, A. C., Wiegand, A., & Buzalaf, M. A. R. (2014). Use of dentifrices to prevent erosive tooth wear: harmful or helpful? Brazilian oral research, 28(SPE), 1-6.

Malkoc, M. A., Taşdemir, S. T., Ozturk, A. N., Ozturk, B., & Berk, G. (2011). Effects of laser and acid etching and air abrasion on mineral content of dentin. Lasers in medical science, 26(1), 21-27.

Maltarollo, T. H., Pedron, I. G., Medeiros, J. M. F., Kubo, H., Martins, J. L., & Shitsuka, C. (2020). A erosão dentária é um problema! Research, Society and Development, 9(3), e168932723-e168932723.

Nahorny, S., Zanin, H., Christino, V. A., Marciano, F. R., Lobo, A. O., & Soares, L. E. S. (2017). Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion. Materials Science and Engineering: C, 79, 199-208.

Nova, P. R. d. M. V., Lins Filho, P. C., Dias, M. F., Teixeira, H. M., Cardoso, S. O., & Lima, M. E. M. (2021). The effect of commercial herbal toothpastes on dental wear: a comparative evaluation by Optical coherence tomography. Research, Society and Development, 10(11), e161101119583-e161101119583.

Oliveira, P. H. C., Oliveira, M. R. C., Oliveira, L. H. C., Sfalcin, R. A., Pinto, M. M., Rosa, E. P., & Bussadori, S. K. (2019). Evaluation of Different Dentifrice Compositions for Increasing the Hardness of Demineralized Enamel: An in Vitro Study. Dentistry journal, 7(1), 14.

Olley, R. C., Pilecki, P., Hughes, N., Jeffery, P., Austin, R. S., Moazzez, R., & Bartlett, D. (2012). An in situ study investigating dentine tubule occlusion of dentifrices following acid challenge. Journal of dentistry, 40(7), 585-593.

Ortiz, A. d. C., Tenuta, L. M. A., Tabchoury, C. P. M., & Cury, J. A. (2016). Anticaries potential of low fluoride dentifrices found in the Brazilian market. Brazilian dental journal, 27(3), 298-302.

Parker, A. S., Patel, A. N., Al Botros, R., Snowden, M. E., McKelvey, K., Unwin, P. R., & Peruffo, M. (2014). Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel. Journal of dentistry, 42, S21-S29.

Passos, V. F., Melo, M. A., Vasconcellos, A. A., Rodrigues, L. K., & Santiago, S. L. (2013). Comparison of methods for quantifying dental wear caused by erosion and abrasion. Microscopy Research and Technique, 76(2), 178-183.

Petrou, I., Heu, R., Stranick, M., Lavender, S., Zaidel, L., Cummins, D., & Gimzewski, J. K. (2009). A breakthrough therapy for dentin hypersensitivity: how dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. Journal of Clinical Dentistry, 20(1), 23.

Poggio, C., Gulino, C., Mirando, M., Colombo, M., & Pietrocola, G. (2017). Preventive effects of different protective agents on dentin erosion: An in vitro investigation. Journal of clinical and experimental dentistry, 9(1), e7.

Poggio, C., Lombardini, M., Vigorelli, P., Colombo, M., & Chiesa, M. (2014). The role of different toothpastes on preventing dentin erosion: An sem and afm study®. Scanning: The Journal of Scanning Microscopies, 36(3), 301-310.

Sanchez, A. Y., de Oliveira, C. L., Negrini, T. C., Hashizume, L. N., Hara, A. T., Maltz, M., & Arthur, R. A. (2018). In situ effect of arginine-containing dentifrice on plaque composition and on enamel demineralization under distinct cariogenic conditions. Caries Research, 52(6), 588-597.

Shellis, R., Barbour, M., Jones, S., & Addy, M. (2010). Effects of pH and acid concentration on erosive dissolution of enamel, dentine, and compressed hydroxyapatite. European journal of oral sciences, 118(5), 475-482.

Soares, L. E. S., da Silva Magalhães, J., Marciano, F. R., & Lobo, A. O. (2018). Surface characteristics of a modified acidulated phosphate fluoride gel with nano‐hydroxyapatite coating applied on bovine enamel subjected to an erosive environment. Microscopy Research and Technique.

Soares, L. E. S., & De Carvalho Filho, A. C. B. (2015). Protective effect of fluoride varnish and fluoride gel on enamel erosion: roughness, SEM‐EDS, and µ‐EDXRF studies. Microscopy research and technique, 78(3), 240-248.

Soares, L. E. S., do Espirito Santo, A. M., Brugnera, A., Zanin, F. A. A., & Martin, A. A. (2009). Effects of Er: YAG laser irradiation and manipulation treatments on dentin components, part 2: energy-dispersive X-ray fluorescence spectrometry study. Journal of biomedical optics, 14(2), 024002-024002-024007.

Soares, L. E. S., Martin, O. C. L., Moriyama, L. T., Kurachi, C., & Martin, A. A. (2013). Relationship between the chemical and morphological characteristics of human dentin after Er: YAG laser irradiation. Journal of biomedical optics, 18(6), 068001-068001.

Soares, L. E. S., Melo, T. M. T., de Sá Brandim, A., & de Oliveira, I. R. (2019). Chemical and morphological evaluation of enamel and dentin near cavities restored with conventional and zirconia modified glass ionomer subjected to erosion‐abrasion. Microscopy Research and Technique.

Sullivan, R., Rege, A., Corby, P., Klaczany, G., Allen, K., Hershkowitz, D., & Wolff, M. (2014). Evaluation of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to prevent enamel loss after erosive challenges using an intra-oral erosion model. The Journal of clinical dentistry, 25(1 Spec No A), A7-13.

Sun, Y., Li, X., Deng, Y., Sun, J. N., Tao, D., Chen, H., . . . Feng, X. (2014). Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts. Journal of dentistry, 42, S30-S38.

ten Gate, J., & Imfeld, T. (1996). Dental erosion, summary. European Journal of Oral Sciences, 104(2), 241-244.

Tenuta, L. M., & Cury, J. A. (2013). Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. In Toothpastes (Vol. 23, pp. 108-124): Karger Publishers.

Vogel, G. L., Mao, Y., Chow, L. C., & Proskin, H. (2000). Fluoride in plaque fluid, plaque, and saliva measured for 2 hours after a sodium fluoride monofluorophosphate rinse. Caries Research, 34(5), 404-411.

Walsh, T., Worthington, H. V., Glenny, A. M., Appelbe, P., Marinho, V. C., & Shi, X. (2010). Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. Cochrane database of systematic reviews(1).

Walsh, T., Worthington, H. V., Glenny, A. M., Marinho, V. C., & Jeroncic, A. (2019). Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane database of systematic reviews(3).

West, N., He, T., Macdonald, E., Seong, J., Hellin, N., Barker, M., & Eversole, S. (2017). Erosion protection benefits of stabilized SnF 2 dentifrice versus an arginine–sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies. Clinical oral investigations, 21(2), 533-540.

Wood, N. J., Jones, S. B., Chapman, N., Joiner, A., Philpotts, C. J., & West, N. X. (2018). An interproximal model to determine the erosion-protective effect of calcium silicate, sodium phosphate, fluoride formulations. Dental Materials, 34(2), 355-362.

Downloads

Published

05/02/2022

How to Cite

LUZ, B. R. .; SILVA, G. H. F. .; SILVA, M. H. P. M. da .; LAURINDO, V. S. .; SEEFELDT, V. B. .; NAHÓRNY, S.; SOARES, L. E. S. . Does the composition of toothpaste affect the tooth resistance to erosion/abrasion processes?. Research, Society and Development, [S. l.], v. 11, n. 2, p. e56311226243, 2022. DOI: 10.33448/rsd-v11i2.26243. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26243. Acesso em: 22 dec. 2024.

Issue

Section

Health Sciences