¿La composición de la pasta de dientes afecta la resistencia de los dientes a los procesos de erosión / abrasión?

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i2.26243

Palabras clave:

Compuesto; Dentífricos; Abrasión de los dientes; Desmineralización; Fluoruros.

Resumen

Este estudio tuvo como objetivo evaluar el diente después del cepillado con pasta de dientes que contenga o no compuesto activo y con diferentes concentraciones de flúor después de la erosión para establecer la efectividad de cada dentífrico. Se trataron muestras bovinas de esmalte, E (n = 36) y dentina, D (n = 36) con saliva artificial (AS - control), dentífrico fluorado (FD), arginina al 8% (AR) y silicato de calcio (CS). Las muestras (n = 72) fueron sometidas a ciclos de desmineralización (jugo de naranja) seguido de remineralización (saliva) y luego cepillado de dientes (AR, FD y CS). El ciclo anterior se repitió 3 ´/día durante cinco días. Se realizaron espectrometría de micro fluorescencia de rayos X de dispersión de energía (µ-EDXRF), pruebas de rugosidad y microscopía electrónica de barrido (SEM). La media de los valores de rugosidad (Ra, μm) fueron E-AS, 0,20; E-FD, 0,15; E-AR, 0,18; E-CS, 0,18; D-AS, 0,31; D-FD, 0,30; D-AR, 0,37; D-CS, 0,44. Las imágenes SEM mostraron pérdida de sustancia dentaria en los tratamientos de EA y FD. Se observó una variación mineral positiva significativa en el grupo D-AR (p <0.05). El dentífrico FD minimizó los efectos erosivos. La arginina y el silicato de calcio podrían mejorar la protección dental mediante una capa superficial de depósitos. Diferentes compuestos activos dieron como resultado diversos grados de protección con respecto al tipo de sustrato. La alta concentración de flúor y la inclusión de compuestos activos mejora el nivel de protección del dentífrico.

Citas

Aguiar, J. D., Medeiros, I. S., Souza Junior, M. H. S., & Loretto, S. C. (2017). Influence of the extended use of desensitizing toothpastes on dentin bonding, microhardness and roughness. Brazilian dental journal, 28(3), 346-353.

Bartlett, D. (2006). Intrinsic causes of erosion. In Dental Erosion. (Vol.20, pp.119-139), Karger Publishers.

Berkathullah, M., Farook, M. S., & Mahmoud, O. (2018). The Effectiveness of Remineralizing Agents on Dentinal Permeability. BioMed research international, 2018.

Crastechini, E., Borges, A., & Torres, C. (2018). Effect of Remineralizing Gels on Microhardness, Color and Wear Susceptibility of Bleached Enamel. Operative dentistry.

Crastechini, E., Borges, A., & Torres, C. (2019). Effect of Remineralizing Gels on Microhardness, Color and Wear Susceptibility of Bleached Enamel. Operative dentistry, 44(1), 76-87.

de Queiroz, A. S., dos Santos, I. R., da Mota Martins, V., de Oliveira Andrade, C. M., Dietrich, L., Nascimento, F., & dos Reis, T. A. (2021). A influência do dentifrício na abrasividade da estrutura dentinária: uma revisão narrativa. Research, Society and Development, 10(14), e210101421985-e210101421985.

Faller, R. V., Eversole, S. L., & Tzeghai, G. E. (2011). Enamel protection: a comparison of marketed dentifrice performance against dental erosion. American journal of dentistry, 24(4), 205.

Featherstone, J., Cutress, T., Rodgers, B., & Dennison, P. (1982). Remineralization of artificial caries-like lesions in vivo by a self-administered mouthrinse or paste. Caries Research, 16(3), 235-242.

Ferreira, S. S., Scaramucci, T., Hara, A. T., Aoki, I. V., & Sobral, M. A. P. (2015). Supplementation of an Orange Juice with Dietary Proteins to Prevent Enamel and Dentin Erosion. Brazilian dental journal, 26(3), 263-267.

Fita, K., & Kaczmarek, U. (2016). The Impact of Selected Fluoridated Toothpastes on Dental Erosion in Profilometric Measurement. Advances in clinical and experimental medicine: official organ Wroclaw Medical University, 25(2), 327-333.

Ganss, C., Klimek, J., Brune, V., & Schürmann, A. (2004). Effects of two fluoridation measures on erosion progression in human enamel and dentine in situ. Caries Research, 38(6), 561-566.

Gomes, R. N. S., Bhattacharjee, T. T., Carvalho, L. F. C., & Soares, L. E. S. (2017). Fast monitoring of tooth erosion caused by medicaments used in the treatment of respiratory diseases by ATR-FTIR and μ-EDXRF analysis. Lasers in medical science, 1-10.

Gomes, R. N. S., Bhattacharjee, T. T., Carvalho, L. F. C., & Soares, L. E. S. (2018). ATR‐FTIR spectroscopy and μ‐EDXRF spectrometry monitoring of enamel erosion caused by medicaments used in the treatment of respiratory diseases. Microscopy Research and Technique, 81(2), 220-227.

Gomes, R. N. S., Bhattacharjee, T. T., Carvalho, L. F. C., & Soares, L. E. S. (2019). Adverse effects of respiratory disease medicaments and tooth brushing on teeth: A scanning electron microscopy, X‐ray fluorescence and infrared spectroscopy study. Microscopy Research and Technique.

Ionta, F. Q., dos Santos, N. M., Mesquita, I. M., Dionísio, E. J., Cruvinel, T., Honório, H. M., & Rios, D. (2019). Is the dentifrice containing calcium silicate, sodium phosphate, and fluoride able to protect enamel against chemical mechanical wear? An in situ/ex vivo study. Clinical oral investigations, 1-8.

João-Souza, S. H., Scaramucci, T., Borges, A. B., Lussi, A., Carvalho, T. S., & Aranha, A. C. C. (2019). Influence of desensitizing and anti-erosive toothpastes on dentine permeability: An in vitro study. Journal of dentistry, 89, 103176.

Joiner, A., Schäfer, F., Naeeni, M. M., Gupta, A. K., & Zero, D. T. (2014). Remineralisation effect of a dual-phase calcium silicate/phosphate gel combined with calcium silicate/phosphate toothpaste on acid-challenged enamel in situ. Journal of dentistry, 42, S53-S59.

Kyaw, K., Otsuki, M., Segarra, M., Hiraishi, N., & Tagami, J. (2018). Effect of Calcium-phosphate Desensitizers on Staining Susceptibility of Acid-eroded Enamel. Operative dentistry.

Lombardini, M., Ceci, M., Colombo, M., Bianchi, S., & Poggio, C. (2014). Preventive effect of different toothpastes on enamel erosion: AFM and SEM studies. Scanning: The Journal of Scanning Microscopies, 36(4), 401-410.

Lussi, A., & Jaeggi, T. (2006). Chemical factors. In Dental Erosion (Vol. 20, pp. 77-87): Karger Publishers.

Lussi, A., Schlüter, N., Rakhmatullina, E., & Ganss, C. (2011). Dental erosion–an overview with emphasis on chemical and histopathological aspects. Caries Research, 45(Suppl. 1), 2-12.

Magalhaes, A. C., Wiegand, A., & Buzalaf, M. A. R. (2014). Use of dentifrices to prevent erosive tooth wear: harmful or helpful? Brazilian oral research, 28(SPE), 1-6.

Malkoc, M. A., Taşdemir, S. T., Ozturk, A. N., Ozturk, B., & Berk, G. (2011). Effects of laser and acid etching and air abrasion on mineral content of dentin. Lasers in medical science, 26(1), 21-27.

Maltarollo, T. H., Pedron, I. G., Medeiros, J. M. F., Kubo, H., Martins, J. L., & Shitsuka, C. (2020). A erosão dentária é um problema! Research, Society and Development, 9(3), e168932723-e168932723.

Nahorny, S., Zanin, H., Christino, V. A., Marciano, F. R., Lobo, A. O., & Soares, L. E. S. (2017). Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion. Materials Science and Engineering: C, 79, 199-208.

Nova, P. R. d. M. V., Lins Filho, P. C., Dias, M. F., Teixeira, H. M., Cardoso, S. O., & Lima, M. E. M. (2021). The effect of commercial herbal toothpastes on dental wear: a comparative evaluation by Optical coherence tomography. Research, Society and Development, 10(11), e161101119583-e161101119583.

Oliveira, P. H. C., Oliveira, M. R. C., Oliveira, L. H. C., Sfalcin, R. A., Pinto, M. M., Rosa, E. P., & Bussadori, S. K. (2019). Evaluation of Different Dentifrice Compositions for Increasing the Hardness of Demineralized Enamel: An in Vitro Study. Dentistry journal, 7(1), 14.

Olley, R. C., Pilecki, P., Hughes, N., Jeffery, P., Austin, R. S., Moazzez, R., & Bartlett, D. (2012). An in situ study investigating dentine tubule occlusion of dentifrices following acid challenge. Journal of dentistry, 40(7), 585-593.

Ortiz, A. d. C., Tenuta, L. M. A., Tabchoury, C. P. M., & Cury, J. A. (2016). Anticaries potential of low fluoride dentifrices found in the Brazilian market. Brazilian dental journal, 27(3), 298-302.

Parker, A. S., Patel, A. N., Al Botros, R., Snowden, M. E., McKelvey, K., Unwin, P. R., & Peruffo, M. (2014). Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel. Journal of dentistry, 42, S21-S29.

Passos, V. F., Melo, M. A., Vasconcellos, A. A., Rodrigues, L. K., & Santiago, S. L. (2013). Comparison of methods for quantifying dental wear caused by erosion and abrasion. Microscopy Research and Technique, 76(2), 178-183.

Petrou, I., Heu, R., Stranick, M., Lavender, S., Zaidel, L., Cummins, D., & Gimzewski, J. K. (2009). A breakthrough therapy for dentin hypersensitivity: how dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. Journal of Clinical Dentistry, 20(1), 23.

Poggio, C., Gulino, C., Mirando, M., Colombo, M., & Pietrocola, G. (2017). Preventive effects of different protective agents on dentin erosion: An in vitro investigation. Journal of clinical and experimental dentistry, 9(1), e7.

Poggio, C., Lombardini, M., Vigorelli, P., Colombo, M., & Chiesa, M. (2014). The role of different toothpastes on preventing dentin erosion: An sem and afm study®. Scanning: The Journal of Scanning Microscopies, 36(3), 301-310.

Sanchez, A. Y., de Oliveira, C. L., Negrini, T. C., Hashizume, L. N., Hara, A. T., Maltz, M., & Arthur, R. A. (2018). In situ effect of arginine-containing dentifrice on plaque composition and on enamel demineralization under distinct cariogenic conditions. Caries Research, 52(6), 588-597.

Shellis, R., Barbour, M., Jones, S., & Addy, M. (2010). Effects of pH and acid concentration on erosive dissolution of enamel, dentine, and compressed hydroxyapatite. European journal of oral sciences, 118(5), 475-482.

Soares, L. E. S., da Silva Magalhães, J., Marciano, F. R., & Lobo, A. O. (2018). Surface characteristics of a modified acidulated phosphate fluoride gel with nano‐hydroxyapatite coating applied on bovine enamel subjected to an erosive environment. Microscopy Research and Technique.

Soares, L. E. S., & De Carvalho Filho, A. C. B. (2015). Protective effect of fluoride varnish and fluoride gel on enamel erosion: roughness, SEM‐EDS, and µ‐EDXRF studies. Microscopy research and technique, 78(3), 240-248.

Soares, L. E. S., do Espirito Santo, A. M., Brugnera, A., Zanin, F. A. A., & Martin, A. A. (2009). Effects of Er: YAG laser irradiation and manipulation treatments on dentin components, part 2: energy-dispersive X-ray fluorescence spectrometry study. Journal of biomedical optics, 14(2), 024002-024002-024007.

Soares, L. E. S., Martin, O. C. L., Moriyama, L. T., Kurachi, C., & Martin, A. A. (2013). Relationship between the chemical and morphological characteristics of human dentin after Er: YAG laser irradiation. Journal of biomedical optics, 18(6), 068001-068001.

Soares, L. E. S., Melo, T. M. T., de Sá Brandim, A., & de Oliveira, I. R. (2019). Chemical and morphological evaluation of enamel and dentin near cavities restored with conventional and zirconia modified glass ionomer subjected to erosion‐abrasion. Microscopy Research and Technique.

Sullivan, R., Rege, A., Corby, P., Klaczany, G., Allen, K., Hershkowitz, D., & Wolff, M. (2014). Evaluation of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to prevent enamel loss after erosive challenges using an intra-oral erosion model. The Journal of clinical dentistry, 25(1 Spec No A), A7-13.

Sun, Y., Li, X., Deng, Y., Sun, J. N., Tao, D., Chen, H., . . . Feng, X. (2014). Mode of action studies on the formation of enamel minerals from a novel toothpaste containing calcium silicate and sodium phosphate salts. Journal of dentistry, 42, S30-S38.

ten Gate, J., & Imfeld, T. (1996). Dental erosion, summary. European Journal of Oral Sciences, 104(2), 241-244.

Tenuta, L. M., & Cury, J. A. (2013). Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. In Toothpastes (Vol. 23, pp. 108-124): Karger Publishers.

Vogel, G. L., Mao, Y., Chow, L. C., & Proskin, H. (2000). Fluoride in plaque fluid, plaque, and saliva measured for 2 hours after a sodium fluoride monofluorophosphate rinse. Caries Research, 34(5), 404-411.

Walsh, T., Worthington, H. V., Glenny, A. M., Appelbe, P., Marinho, V. C., & Shi, X. (2010). Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. Cochrane database of systematic reviews(1).

Walsh, T., Worthington, H. V., Glenny, A. M., Marinho, V. C., & Jeroncic, A. (2019). Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane database of systematic reviews(3).

West, N., He, T., Macdonald, E., Seong, J., Hellin, N., Barker, M., & Eversole, S. (2017). Erosion protection benefits of stabilized SnF 2 dentifrice versus an arginine–sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies. Clinical oral investigations, 21(2), 533-540.

Wood, N. J., Jones, S. B., Chapman, N., Joiner, A., Philpotts, C. J., & West, N. X. (2018). An interproximal model to determine the erosion-protective effect of calcium silicate, sodium phosphate, fluoride formulations. Dental Materials, 34(2), 355-362.

Descargas

Publicado

05/02/2022

Cómo citar

LUZ, B. R. .; SILVA, G. H. F. .; SILVA, M. H. P. M. da .; LAURINDO, V. S. .; SEEFELDT, V. B. .; NAHÓRNY, S.; SOARES, L. E. S. . ¿La composición de la pasta de dientes afecta la resistencia de los dientes a los procesos de erosión / abrasión?. Research, Society and Development, [S. l.], v. 11, n. 2, p. e56311226243, 2022. DOI: 10.33448/rsd-v11i2.26243. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26243. Acesso em: 7 jul. 2024.

Número

Sección

Ciencias de la salud