Transient renal blood obliteration as an alternative to the study of renal ischemia-reperfusion syndrome in an animal model
DOI:
https://doi.org/10.33448/rsd-v11i4.27338Keywords:
Cathets; Nephropathy; Ischemia-reperfusion; Animal model.Abstract
The work aims at evaluating the viability of the transient renal blood obliteration method as an alternative to the study of renal CRS in Tayassu tajacu, considering the probable morphological and physiological similarity of this species to humans, since it presents phylogenetic proximity with domestic swine. Eight animals were used, which were submitted to a surgical procedure to induce ischemic nephropathy by clamping the renal vessels with vascular clamp for 60 minutes. Samples were collected for serum urea, creatinine and urinary protein / creatinine ratio (UPC), in addition to renal ultrasonographic evaluation, both before induction and on the 10th and 20th postoperative days, and collection of material for histopathological examination. The results showed a difference in the renal resistivity levels between the evaluated moments, an increase of renal echogenicity with loss of the cortico-spinal relation and presence of discrete glomerular alterations and several tubulointerstitial alterations in the histopathological analysis. It was concluded that the catheter is a good experimental model for studies of induced ischemic nephropathies, but it is necessary to standardize its renal, serological and urinary biochemical parameters in the same nutritional regimen, given the great variability of such data within the species.
References
Almeida, A. M. B., Nogueira Filho, S. L. G., Nogueira, S. S. C., & Munhoz, A. D. (2011). Aspectos hematológicos de catetos (Tayassu tajacuI) mantidos em cativeiro. Pesq. Vet. Bras. 31 (2):173-177.
Alves, M. A. R. (2004). Diagnóstico de Doença Renal Crônica: Avaliação de Proteinúria e Sedimento Urinário. J Bras Nefrol. 26(3).
Anders, H. J., & Ryu M. (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80: 915–925.
Aparício, P. M. G. (2004). Fisiología reproductiva y desarrolo de métodos diagnósticos del estado reproductivo de La hembra de pecari de collar (Tayassu tajacu Linnaeus, 1758) de la Amazônia. Tese de Doutorado em Sanidade Animal, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona. 146p.
Associação Brasileira de Transplante de Órgãos (ABTO). (2013). Dados numéricos da doação de órgãos e transplantes realizados por estado e instituição no período: janeiro / setembro – 2013. Registro Brasileiro de Transplantes. Ano XIX.
BanaeI, S. 2015). Novel role of microRNAs in renal ischemia reperfusion injury. Renal failure, 37(7), 1073-1079.
Bezerra, D. O., Feitosa, M. L. T., Almeida, H. M., Costa, F. A. L., Braga, J. F. V., Souza, F.A. L., Alves, F.R., Pessoa, G. T., & Carvalho, M. A. M. (2014). Collared Pecary (tayassu tajacu) as a new model of renal ischemic injury inducedby clamping the renal artery. Acta Cirúrgica Brasileira. 29 (9), 560-572.
Bragato, N., Fioravanti, M. C. S., Braga. L. G., Reis, D. C., & Borges, N. C. (2015). Lesão renal tubular aguda em cães e gatos: fisiopatogenia e diagnóstico ultrassonográfico. Enciclopédia biosfera, Centro Científico Conhecer - Goiânia, v.11 n.22, p.
Costa, M. F. B. (2019). Efeito nefroprotetor do extrato alcoólico de Lippia sidoides em modelos de lesão renal aguda por isquemia/reperfusão. (DISSERTAÇÃO) – Universidade Federal do Ceará.
Farris, A. B., & Alpers, C. E. (2014). What is the best way to measure renal fibrosis?: A pathologist’s perspective. Kidney Int Suppl. 4(1): 9–15.
Forrester, S. D. (2008). Nefropatias e Ureteropatias. In Birchard, S. J., Sherding, R. G. Manual Saunders – Clínica de Pequenos Animais. 3ª ed., São Paulo: Editora Roca, p. 1001.
Galvez C. H., Montoya G. E., Nofre Sanchez P., Schettini Z. L, &Mendoza B. P. (2004). Sanidad em el manejo del sajino (Tayassu tajacu) en el trópico. VI Congresso International sobre Manejo de Fauna Silvestre en la Amazonia y Lationamerica, 5-10 septembre, Iquitos, Peru, p.38. (Resumo)
Grauer G. F. (2011). Proteinuria: measurement and interpretation. Top Companion Anim Med. 26(3):121-7.
Kezic, A. et al. (2016). Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury. Oxidative Medicine and Cellular Longevity, v. 2016, 12p.
Jeong, B. Y., Park, S., Cho, S., Yu, S., Lee, H. Y., Park, C. G., Kang, J., Jung, D., Park, M. H., Hwang, W., Yun, S., Jung, J., Yoon, S. (2018) TGF- b -mediated NADPH oxidase 4-dependent oxidative stress promotes colistin-induced acute kidney injury. Journal Antimicrob Chemother, 73, 962–972.
Konopka, C. L., Jurach, A., & Wender, O.C.B. (2007). Experimental model for the study of chronic renal ischemia in rats. Morphologic, histological and ultra-structural analysis. Acta Cirúrgica Brasileira - Vol 22 (1) - 12-21.
Lochmiller, R. L., & Grant, W. E. (1984). Serum chemistry of collared peccary (Tayassu tajacu). Journal Wildlife Disease, 20(2):134-140.
Manesh, Y. H., Hemmati, S., Shirooe, S., Nabavi, S. M., Bonakdar, A. T., Fayaznia, R., Asgardoon, M. H., Dehnavi, A. Z., Ghafouri, M., Wandiou, J. G.N., Caprioli, G., Sut, S., Maggi, F. Dall`acqua, S. (2019). Protective effects of hydroalcoholic extracts from an ancient apple variety ‘Mela Rosa dei Monti Sibillini’ against renal ischemia/reperfusion injury in rats. Food Funct, 10, 7544-7552
.
Monteiro R, Brandau R, Gomes WJ, Braile. DM. (2009). Tendências em experimentação animal. Revista Brasileira Cirurgia Cardiovascular, 24(4): 506-513.
Moon, K. H. et al. (2016). Kidney diseases and tissue engineering. Methods, 99, 112-119.
Pires, M. A, Travassos, F. S., Gärtner, F. (2004). Atlas de Patologia Veterinária. Ed. Lidel, Lisboa.
Roso, N. C. (1998). Estudo da proteção renal durante a isquemia e reperfusão em: Sampaio, I. B. M. Estatística aplicada à experimentação animal. Belo Horizonte: Fundação de Ensino e Pesquisa em Medicina Veterinária e Zootecnia. 221p.
Santos, R. V. Merline, M. B., Souza, L. P., Machado, V. M. V., Pantoja, J. C. F., & Prestes, N. C. (2013). Ultrassonografia Doppler na avaliação renal de cadelas diagnosticadas com piometra antes e após tratamento com ovariosalpingohisterectomia. Pesquisa Veterinária Brasileira. 33(5):635-642.
Schroppel, B., & Legendre, C. (2014). Delayed kidney graft function: from mechanism to translation. Kidney international, 86(2), 251-258.
Semedo, P., Donizetti-Oliveira, C., Burgos-Silva, M., et al. (2010). Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Lab Invest, 90: 685–695.
Singh, A. P. (2012). Animal models of acute renal failure. Pharmacological Reports, v. 64, p. 31-44.
Sousa, D. L. (2019). Efeito protetor do óleo essencial de Cymbopogon citratus na injúria de células renais induzidas por isquemia e reperfusão: estudo In vitro e In silico. (DISSERTAÇÃO) – Universidade Federal do Ceará.
Strutz, F., & Neilson E. G. (2003). New insights into mechanisms of fibrosis in immune renal injury. Springer Semin Immunopathol. 24(4):459-76.
Waki, M. F., Martorelli C. R., Mosko P. E., & Kogika M. M. (2010). Classificação em estágios da doença renal crônica em cães e gatos: abordagem clínica, laboratorial e terapêutica. Ciência Rural, 40, 2226-22
Weng, X., Li, S., Qin, Z., Xie, Y., Song, Q., Zhu, Q., & Song, D. (2018). Protective Effect of Nicotinamide Adenine Dinucleotide Phosphate on Renal Ischemia-Reperfusion Injury. Kidney Blood Press Res., v. 43, n. 3, p. 651–663.
Yamaki, I. N., Pontes, R. V. S., Costa, F. L. S., Yamaki, V. N., Teixeira, R. K. C., R Yasojima, E. Y., & Brito, M. V. H. (2016). Síndrome De Isquemia E Reperfussão Renal: Efeito Da Lidocaína E Do Pós-condicionamento Local, Rev. Col. Bras. Cir. 348-353.
Yamaki, V. N., Gonçalves, T. B., Coelho, J. V. B., Pontes, R. V. S., Costa, F. L. S., & Brito, M. V. H. (2012). Efeito Protetor Do Per-condicionamento Isquêmico Remoto Nas Lesões Da Síndrome De Isquemia E Reperfusão Renal Em Ratos, Rev. Col. Bras. Cir., 529-533.
Zhao, M., Zhou, Y., Liu, S., Li, L., Chen, Y., Cheng, J., Lu, Y., & Liu, J. (2018). Control release of mitochondria-targeted antioxidant by injectable self-assembling peptide hydrogel ameliorated persistent mitochondrial dysfunction and inflammation after acute kidney injury. Drug Delivery, 25(1), 546–554.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Robson dos Anjos Honorato; Matheus Levi Tajra Feitosa; Lucilene dos Santos Silva; Maria Acelina Martins de Carvalho; Alcyone de Oliveira Paredes; Nathália Borges de Almeida Angelim; Renato dos Anjos Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.