The Quadrangulation method: a new methodological perspective in Science Teaching

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27451

Keywords:

Chemistry teaching; Course materials; Matter; Physical and chemical transformations; Teaching-learning.

Abstract

This article is the result of a Master's thesis in Science Education and aims to propose a new methodological proposal called Quadrangulation, which refers to a conscious mental process that relates and connects four levels of representation of matter (macroscopic, submicroscopic, symbolic, and characteristics) to work with the physical and chemical transformations of matter. The activities developed through weekly meetings with 8 students from the 1st year of High School in the Regular Education/Teaching modality for 10 weeks. Questionnaires were used as a research instrument. It is characterized as a cross-sectional study, with an exploratory and explanatory qualitative approach. Data were obtained through the application of a pre-test questionnaire with open questions, expository class, construction of didactic material, and post-test questionnaire. Based on the data analysis, it was noticed that the Quadrangulation method can help and collaborate with the teaching and learning of students in the study of subject transformations, representing an advance for the improvement of Science Teaching in schools.

Author Biographies

Luana Ehle Joras, Universidade Federal de Santa Maria

Licenciada em Biologia, mestranda no Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil. E-mail: luanaehlejoras@gmail.com

Maria Rosa Chitolina Schetinger, Universidade Federal de Santa Maria

Graduação em Biologia pela Universidade Federal do Rio Grande do Sul, mestrado em Ciências Biológicas, doutorado em Ciências (Bioquímica) pela Universidade Federal do Paraná e pós-doutorado no Albert Einstein College of Medicine/USA. E-mail: mariachitolina@gmail.com. ORCID iD: https://orcid.org/0000-0002-5240-8935

References

Atkins, P.; Jones, L & Laverman, L (2018). Princípios de química: questionando a vida moderna e o meio ambiente. (7a ed.) Porto Alegre: Bookman.

Autora 1 (2020). O processo da Quadrangulação: uma nova perspectiva metodológica no Ensino de Ciências (Dissertação de Mestrado). Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brasil.

Autora 1 (2021). O método da Quadrangulação no estudo das transformações da matéria com licenciandos em Química. In W. L. da C. Alves (Eds.), Educação Contemporânea: novas metodologias e desafios (pp. 151-171). Belo Horizonte: Synapse Editora.

Ausubel, D P.; Novak, J D & Hanesian, H (1978). Educational psychology: a cognitive view. (2a ed.) New York: Holt Rinehart and Winston.

Björn, A (1990). Pupils' Conceptions of Matter and its Transformations (age 12-16). Studies in Science Education, 18(1), 53-85.

Cañas, G J S & Braibante, M E F (2019). A Química dos Alimentos Funcionais. Química e Sociedade, 41(3), 216-223.

Carnevalle, M R (2012). Jornadas.cie - Ciências 9º ano. (2a ed.) São Paulo: Editora Saraiva.

Chiaro, S & Aquino, K (2017). Argumentação na sala de aula e seu potencial metacognitivo como caminho para um enfoque CTS no ensino de química: uma proposta analítica. Educação e Pesquisa, 43(2), 411-426.

Ciscato, C M.; Pereira, L & Chemello, E (2015). Química - Vol. 1: Ensino médio. São Paulo: Editora Moderna.

Driver, R (1989). Students' conceptions and the learning of science. International Journal of Science Education, 11(5), 481-490.

Filho, B (1998). Sequência básica na elaboração de protocolos de pesquisa. Arquivos Brasileiros de Cardiologia, 71(6), 735-740.

Fonseca, M R M (2013). Química Geral. São Paulo: Ática.

Gabel, D.; Briner, D & Haines, D (1992). Modeling with magnets: A unified approach to chemistry problem solving. The Science Teacher, 59(3), 58-63.

Gabel, D (1993). Use of the particle nature of matter in developing conceptual understanding. Journal of Chemical Education, 70(3),193-194.

Garnett, P J.; Garnett, P J & Hackling, M W (1995). Students' alternative conceptions in chemistry: a review of research and implications for teaching and learning. Studies in Science Education, 25(1), 69-95.

Gewandsznajder, F (2012). Projeto Teláris - Ciências. São Paulo: Ática.

Harrison, A & Treagust, D (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, 98(8), 420-429.

Johnstone, A H (1982). Macro- and micro-chemistry. School Science Review, 64, 377-379.

Johnstone, A H (1989). Some messages for teachers and examiners: an information-processing model. In J. Alex (Org.), Assessment of Chemistry in Schools (pp. 23-39). London: Royal Society of Chemistry Education Division.

Johnstone, A H (2000). Teaching of chemistry - logical or psychological? Chemistry Education: Research and Practice in Europe, 1(1), 9-15.

Johnstone, A H (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 75-83.

Levy-Nahum, T.; Hofstein A.; Mamlok-Naaman, R & Bar-Dov, Z (2004). Can final examinations amplify students’ misconceptions in chemistry? Chemistry Education: Research and Practice, 5(3), 301-325.

Mahaffy, P (2004). The future shape of chemistry education. Chemistry Education Research and Practice, 5(3), 229-245.

Martins, C.; Lopes, W & Andrade, J (2013). Solubilidade das substâncias orgânicas. Química Nova, 36(8), 1248-1255.

Matos, C.; Oliveira, C.; Santos, M & Ferraz, C (2009). Utilização de modelos didáticos no Ensino de Entomologia. Revista de Biologia e Ciências da Terra, 9(1), 19-23.

Mendonça, C O.; & Santos, M W O (2011). Modelos didáticos para o ensino de ciências e biologia: aparelho reprodutor feminino da fecundação a nidação. Anais do Congresso São Cristovão V Colóquio Internacional “Educação e Contemporaneidade”, Sergipe, SE, Brasil. Recuperado de http://hpc.ct.utfpr.edu.br/~charlie/docs/PPGFCET/4_TRABALHO_03_MODELOS%20DID%C3%81TICOS.pdf

Mendonça, V L (2016). Biologia: ecologia: origem da vida e biologia celular embriologia e histologia. (3a ed.) São Paulo: Editora AJS.

Moreira, M A (2011). Metodologias de Pesquisa em Ensino. São Paulo: Livraria da Física.

Nakhleh, M (1992). Why some students don't learn chemistry: chemical misconceptions. Journal of Chemical Education, 69(3), 191-196.

Pozo, J I.; & Crespo, M A G (2009). A aprendizagem e o ensino de ciências: do conhecimento cotidiano ao conhecimento científico. (5a ed.) Porto Alegre: Artmed.

Ribeiro, E.; & Seravalli, E A G (2007). Química de Alimentos. (2a ed.) São Paulo, SP: Blucher.

Rosa, M & Schnetzler, R (1998). Sobre a importância do conceito transformação química no processo de aquisição do conhecimento químico. Química Nova na Escola, 8, 31-35.

Santos, W (2007). Educação científica na perspectiva de letramento como prática social: funções, princípios e desafios. Revista Brasileira de Educação, 12(36), 474-550.

Silva, J S da.; Oliveira, N C R de.; Sousa F S de.; Silva Neto, C Q da.; Saraiva, E. de S.; Brito, M V de.; Sá, G H de & Amorim, L V. (2021). Modelos didáticos de DNA no ensino de genética: experiência com estudantes do ensino médio em uma escola publicado Piauí. Research, Society and Development, 10(2), 1-9.

Silva, L.; Martins, C & Andrade, J (2004). Por que todos os nitratos são solúveis? Química Nova, 27(6), 1016-1020.

Silva, M.; Pereira, M.; Codaro, E & Acciari, H (2015). Corrosão do aço-carbono: uma abordagem do cotidiano no ensino de química. Química Nova, 38(2), 293-296.

Silva, S M.; Eichler, M L & Del Pino, J C (2012). Concepções alternativas de calouros de química para o fenômeno da dissolução. Anais do Congresso Salvador XVI Encontro Nacional de Ensino de Química (XVI ENEQ) e X Encontro de Educação Química da Bahia (X EDUQUI), Salvador, BA, Brasil. Recuperado de https://periodicos.ufba.br/index.php/anaiseneq2012/article/view/7254

Sivico, M J.; Gomes, R. da V.; Ventura, LA & Mendes, A. N. F. (2021). Reflexão da prática docente no ambiente escolar: Um diálogo singular necessário sob o olhar do educando de Química na Educação Básica. Research, Society and Development, 10(6), 1-9.

Stavridou, H & Solomonidou, C (1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education, 20(2), 205-221.

Stavridou, H & Solomonidou, C (1989). Physical phenomena - chemical phenomena: do pupils make the distinction? International Journal of Science Education, 11(1), 83-92.

Taber, K (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemical Education Research and Practice, 14(2), 156-168.

Talanquer, V (2011). Macro, Submicro, and Symbolic: The many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179-195.

Tebaldi-Reis, L.; Bevilacqua, G. D.; Sineiro, S. C. A.; Coutinho-Silva, R. (2022). Investigative activities as promoters of argumentation in science teaching. Research, Society and Development, 11(1), 1-18.

Thomas, G (2017). Triangulation: an expression for stimulating metacognitive reflection regarding the use of ‘triplet’ representations for chemistry learning. Chemical Education Research and Practice, 18(4), 533-548.

Published

21/03/2022

How to Cite

JORAS, L. E. .; SCHETINGER, M. R. C. . The Quadrangulation method: a new methodological perspective in Science Teaching. Research, Society and Development, [S. l.], v. 11, n. 4, p. e35511427451, 2022. DOI: 10.33448/rsd-v11i4.27451. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27451. Acesso em: 15 jan. 2025.

Issue

Section

Education Sciences