Chemometric tools for a better understanding of fatty acid profile of fishes with potential to diversify fishing farming activity

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27461

Keywords:

Catfish; Discriminate analysis; Grass carp; Pacu.

Abstract

This article evaluates the lipid profile of three fish species with the potential for breeding and diversification in Brazil and worldwide by means of chemometric tools. Grass carp (Ctenopharyngodon idella), Pacu (Piaractus mesopotamicus), and Catfish (Ictalurus punctatus) were captured at 24 months of age and analyzed for lipid profile using gas chromatograph. The multivariate analysis, discriminant and canonical discriminant, were used to better understand the differences in the lipid profiles between the three fish species. The fatty acid profile indicated oleic acid as the major component for all three species, resulting in a high percentage of monounsaturated fatty acids (MUFA). The Pacu presented the lowest content of polyunsaturated fatty acids. Discriminant analysis proved to be an important tool to differentiate lipid profiles between species. The pentadecylic (15:0), palmitoleic (16:1), margaric (17:0), stearic (18:0), arachidonic (20:4), and lignoceric (24:0) fatty acids presented the highest level of discrimination between species. This propagation of fatty acid values from these species reinforces their food quality and expands the possibilities of developing fish farming.

References

AOAC. (1995). Official Methods of Anaysis of the Association of Analytical Chemists International. Official Methods, Gaithersburg.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37, 911–917.

del Pazo, F., Sánchez, S., Posner, V., Sciara, A. A., Arranz, S. E., & Villanova, G. V. (2021). Genetic diversity and structure of the commercially important native fish pacu (Piaractus mesopotamicus) from cultured and wild fish populations: relevance for broodstock management. Aquaculture International, 29, 289–305. https://doi.org/10.1007/s10499-020-00626-w

Department of Health and Social Security. (1984). Diet and cardiovascular disease. Report on Health and social subjects. HMSO, London. 28, 443-456.

FAO. (2016). The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. Rome.

FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.

Fernandes, C. E., Vasconcelos, M. A. da S., de Almeida Ribeiro, M., Sarubbo, L. A., Andrade, S. A. C., & Filho, A. B. de M. (2014) Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry, 160, 67–71. https://doi.org/10.1016/j.foodchem.2014.03.055

González, C. G., Liste, A. V., & Felpeto, A. B. (2011). Data processing with R, Statistica and SPSS = Tratamiento de datos con R, Statistica y SPSS. 1Ed. Ediciones Diaz de Santos (in Spanish).

ISO. (1978) International Organization for Standardization. Animal and vegetable fats and oils- Preparation of methyl esters of fatty acids (Method ISO 5509). Geneve. 1-6.

Lise, C. C., Marques, C., Bonadimann, F. S., Pereira, E. A., & Mitterer-Daltoé, M. L. (2020). Amino acid profile of food fishes with potential to diversify fish farming activity. Journal of Food Science and Technology, 58, 383–388. https://doi.org/10.1007/s13197-020-04747-1

Marques, C., Lise, C. C., Bonadimann, F. S., & Mitterer-Daltoé, M. L. (2019). Flash Profile as an effective method for assessment of odor profile in three different fishes. Journal of Food Science and Technology, 56, 4036–4044. https://doi.org/10.1007/s13197-019-03872-w

Marques, C., Toazza, C. E. B., Sari, R., Mitterer-Daltoé, M. L., do Amaral, W., & Masson, M. L. (2021). Long-term storage of yacon (Smallanthus sonchifolius) juice: Phytochemical profile, in vitro prebiotic potential and discriminant bioactive properties. Food Bioscience, 41, 100970. https://doi.org/10.1016/j.fbio.2021.100970

Matos, Â. P., Matos, A. C., Moecke, E. H. S., Matos, Â. P., Matos, A. C., & Moecke, E. H. S. (2019). Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Brazilian Journal Food and Technology. 22. https://doi.org/10.1590/1981-6723.19318

Melo, D. M., Roseno, T. F., Barros, M. W., Faria, R. A. P. G., Paglarini, C. S., Faria, P. B., Mariotto, S., & Souza, X. R. (2019). Fatty acid profiles and cholesterol content of Five species of pacu-pevas from the pantanal region of Mato Grosso, Brazil. Journal of Food Composition and Analysis, 83, 103283. https://doi.org/10.1016/j.jfca.2019.103283

Mitterer-Daltoé, M. L., Petry, F. C., Wille, D. F., Treptow, R. O., Martins, V. M. V., & Queiroz, M. I. (2012). Chemical and sensory characteristics of meat from Nellore and Crioulo Lageano breeds: Chemical and sensory characteristics of meat. International Journal of Food Science & Technology, 47, 2092–2100. https://doi.org/10.1111/j.1365-2621.2012.03075.x

Mitterer‐Daltoé, M. L., Latorres, J. M., Queiroz, M. I., Fiszman, S., & Varela, P. (2013). Reasons Underlying Low Fish Consumption Where Availability Is Not an Issue. A Case Study in Brazil, One of the World’s Largest Fish Producers. Journal of Sensory Studies, 28, 205–216. https://doi.org/10.1111/joss.12037

Mohanty, B. P., Mahanty, A., Ganguly, S., Mitra, T., Karunakaran, D., & Anandan, R. (2019). Nutritional composition of food fishes and their importance in providing food and nutritional security. Food chemistry, 293, 561-570. https://doi.org/10.1016/j.foodchem.2017.11.039

Peixe BR. (2022). Produção brasileira de peixes de cultivo sobe 4,7% e atinge 841,005 t. Anuário da piscicultura 2022 - Notícias - Aquaculture Brasil. https://www.aquaculturebrasil.com/noticia/289/peixe-br-divulga-anuario-da-piscicultura-2022

Rosa, A. P. C., de Carvalho, L. F., Goldbeck, L., Enke, D. B. S., Rocha, C. B, Souza-Soares, L. A., Pouey, J. L. O. F., & Costa, J. A. V. (2020). Productive performance and fatty acid profile of hungarian carp fingerlings fed with Spirulina enriched feed. Research, Society and Development, 9 (3), e116932301-e116932301. https://doi.org/10.33448/rsd-v9i3.2301

Saldaña, E., Lemos, A. L. da S. C., Selani, M. M., Spada, F. P., Almeida, M. A. de, & Contreras-Castillo, C. J. (2015). Influence of animal fat substitution by vegetal fat on Mortadella-type products formulated with different hydrocolloids. Scientia Agricola, 72, 495–503. https://doi.org/10.1590/0103-9016-2014-0387

Swapna, H. C., Rai, A. K., Bhaskar, N., & Sachindra, N. M. (2010). Lipid classes and fatty acid profile of selected Indian fresh water fishes. Journal of Food Science and Technology, 47, 394–400. https://doi.org/10.1007/s13197-010-0065-6

Viriato, L. S. R., Queirós, M. de S., da Silva, M. G., Cardoso, L. P, Ribeiro, P. B. A., & Gigante, L. M. (2019). Milk fat crystal network as a strategy for delivering vegetable oils high in omega-9, -6, and -3 fatty acids. Food Research International, 128, 1-34 10.1016/j.foodres.2019.108780

Downloads

Published

22/03/2022

How to Cite

TONIAL, I. B. .; SCHUASTZ-BREDA, L.; LISE, C. C. .; SILVA, D. C. .; OLDONI, T. C. .; GERHARD, N. S. .; MITTERER-DALTOÉ, M. L. . Chemometric tools for a better understanding of fatty acid profile of fishes with potential to diversify fishing farming activity . Research, Society and Development, [S. l.], v. 11, n. 4, p. e42011427461, 2022. DOI: 10.33448/rsd-v11i4.27461. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27461. Acesso em: 5 nov. 2024.

Issue

Section

Agrarian and Biological Sciences