Antitumor and antileishmanial activities of limonene-thiosemicarbazones bearing heterocycles nucleous
DOI:
https://doi.org/10.33448/rsd-v11i5.28152Keywords:
Limonene; Thiosemicarbazone; Imidazole; Antitumor activity.Abstract
In the present study, we provided the synthesis of a series of R-(+)- and S-(-)-limonene-based thiosemicarbazones containing different pentacyclic heterocyclic nucleus moiety focused in the search of novel antitumor and antileishmanial agents. In the antitumor assay, the derivative imidazole of S-(-)-limonene 8 was the most active compound, especially for U-251, UACC-62 and K562 human tumor cell lines with GI50 ranging from 1.0 to <0.25 µg.mL-1. On the other hand, the imidazole-thiosemicarbazone of R-(+)-limonene 4 was the most promising derivative against the promastigote form of L. amazonensis (IC50=5.9µM). Meanwhile, thiosemicarbazones without limonene moiety (9-12) showed the lowest activities in the biological assays performed. The results demonstrated the influence of the lipophilic molecular character and stereochemistry of chiral monoterpene on the evaluated activities.
References
Arruda, D. C., Miguel, D. C., Yokoyama-Yasunaka, J. K., Katzin, A. M., & Uliana, S. R. (2009). Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 63 (9), 643–649.
Batista, S. A. A., Vandresen, F., Falzirolli, H., Britta, E., de Oliveira, D. N., Catharino, R. R., Gonçalves, M. A., Ramalho, T. C., La Porta F. A., Nakamura, C. V., & da Silva, C. C. (2018). Synthesis and comparison of antileishmanial and cytotoxic activities of S-(−)-limonene benzaldehyde thiosemicarbazones with their R-(+)-analogues. Journal of Molecular Structure, 1179, 252-262.
Carvalho, H. C., Ieque, A. L., Valverde, T. L., Baldin, V. P., Meneguello, J. E., Campanerut-Sá, P., Vandresen, F., Ghiraldi Lopes, L. D., Passos Souza, M. R., Santos, N., Dias Siqueira, V. L., Caleffi-Ferracioli, K. R., Lima Scodro, R. B., & Cardoso, R. F. (2021). Activity of (-)-Camphene Derivatives Against Mycobacterium tuberculosis in Acidic pH. Medicinal Chemistry, 17 (5), 485–492.
da Silva, P. R., de Oliveira, J. F., da Silva, A. L., Queiroz, C. M., Feitosa, A., Duarte, D., da Silva, A. C., de Castro, M., Pereira, V., da Silva, R., Alves, L. C., Dos Santos, F., & de Lima, M. (2020). Novel indol-3-yl-thiosemicarbazone derivatives: Obtaining, evaluation of in vitro leishmanicidal activity and ultrastructural studies. Chemico-biological interactions, 315, 108899.
de Araújo Neto, L. N., do Carmo Alves de Lima, M., de Oliveira, J. F., de Souza, E. R., Buonafina, M., Vitor Anjos, M. N., Brayner, F. A., Alves, L. C., Neves, R. P., & Mendonça-Junior, F. (2017). Synthesis, cytotoxicity and antifungal activity of 5-nitro-thiophene-thiosemicarbazones derivatives. Chemico-biological interactions, 272, 172–181.
de Melos, J. L., Torres-Santos, E. C., Faiões, V., Del Cistia, C., Sant'Anna, C. M., Rodrigues-Santos, C. E., & Echevarria, A. (2015). Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. European journal of medicinal chemistry, 103, 409–417.
de Oliveira, J. F., da Silva, A. L., Vendramini-Costa, D. B., da Cruz Amorim, C. A., Campos, J. F., Ribeiro, A. G., Olímpio de Moura, R., Neves, J. L., Ruiz, A. L., Ernesto de Carvalho, J., & Alves de Lima, M. (2015). Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. European journal of medicinal chemistry, 104, 148–156.
Dong, H., Liu, J., Liu, X., Yu, Y., & Cao, S. (2017). Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorganic chemistry, 75, 106–117.
Dos Santos, A. O., Veiga-Santos, P., Ueda-Nakamura, T., Filho, B. P., Sudatti, D. B., Bianco, E. M., Pereira, R. C., & Nakamura, C. V. (2010). Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Marine drugs, 8 (11), 2733–2743.
Husain, A., Ahmad, A., Khan, S. A., Asif, M., Bhutani, R., & Al-Abbasi, F. A. (2016). Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 24 (1), 104–114.
Kalinowski, D. S., Quach, P., & Richardson, D. R. (2009). Thiosemicarbazones: the new wave in cancer treatment. Future medicinal chemistry, 1(6), 1143–1151.
Kousar, S., Nadeem, F.,Khan, O., & Shahzadi, A (2017). Chemical Synthesis of Various Limonene Derivatives – A Comprehensive Review. International Journal of Chemical and Biochemical Sciences, 11, 102-112.
Lavanya, M., Haribabu, J., Ramaiah, K.P., Yadav, C.S., Chitumalla, R.K., Jang, J., Karvembu, R., Reddy, A.V., & Jagadeesh, M. (2021). 2'-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper (II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorganica Chimica Acta, 524, 120440.
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46 (1-3): 3–26.
Matesanz, A. I., Herrero, J. M., & Quiroga, A. G. (2021). Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes. Current topics in medicinal chemistry, 21(1), 59–72.
MOLINSPIRATION Property Calculation Service. Available at: . Accessed on: 02 Nov. 2021. b) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules (2017). Sci. Rep., 7: 42717. Available at: <http://www.swissadme.ch/>. Accessed on: 02 Nov. 2021. c) OSIRIS Predictor. Available at: <http://www.cheminfo.org/Chemistry/Cheminformatics/Property_explorer/index.html>. Accessed on: 02 Nov. 2021.
Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., & Vaigro-Wolff, A. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute, 83 (11), 757–766.
Moreno-Rodríguez, A., Salazar-Schettino, P. M., Bautista, J. L., Hernández-Luis, F., Torrens, H., Guevara-Gómez, Y., Pina-Canseco, S., Torres, M. B., Cabrera-Bravo, M., Martinez, C. M., & Pérez-Campos, E. (2014). In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi. European journal of medicinal chemistry, 87, 23–29.
Palamarciuc, O., Milunović, M. N. M., Sirbu, A., Stratulat, E., Pui, A., Gligorijević, N., & Arion, V. (2019). Investigation of the cytotoxic potential of methyl imidazole-derived thiosemicarbazones and their copper(II) complexes with dichloroacetate as co-ligand. New Journal of Chemistry, 43, 1340-1357.
Pervez, H., Manzoor, N., Yaqub, M., & Khan, K. M. (2014). 5-Nitroisatin-derived thiosemicarbazones: potential antileishmanial agents. Journal of enzyme inhibition and medicinal chemistry, 29(5), 628–632.
Richardson, D. R., Sharpe, P. C., Lovejoy, D. B., Senaratne, D., Kalinowski, D. S., Islam, M., & Bernhardt, P. V. (2006). Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. Journal of medicinal chemistry, 49(22), 6510–6521.
Schröder, J., Noack, S., Marhöfer, R. J., Mottram, J. C., Coombs, G. H., & Selzer, P. M. (2013). Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB. PloS one, 8(10), e77460.
Shoemaker R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature reviews. Cancer, 6 (10), 813–823.
Souza, M. R. P., Coelho, N. P., Baldin, V. P., Scodro, R. B. L., Cardoso, R. F., da Silva, C. C., & Vandresen, F. (2019). Synthesis of novel (-)-Camphene-based thiosemicarbazones and evaluation of anti-Mycobacterium tuberculosis activity. Natural Product Research, 33 (23), 3372-3377.
Temraz, M. G., Elzahhar, P. A., El-Din A Bekhit, A., Bekhit, A. A., Labib, H. F., & Belal, A. (2018). Anti-leishmanial click modifiable thiosemicarbazones: Design, synthesis, biological evaluation and in silico studies. European journal of medicinal chemistry, 151, 585–600.
Vandresen, F., Falzirolli, H., Almeida Batista, S. A., da Silva-Giardini, A. P., de Oliveira, D. N., Catharino, R. R., Ruiz, A. L., de Carvalho, J. E., Foglio, M. A., & da Silva, C. C. (2014). Novel R-(+)-limonene-based thiosemicarbazones and their antitumor activity against human tumor cell lines. European journal of medicinal chemistry, 79, 110–116.
Vandresen, F., Souza, M.R.P., Britta, E., Silva, E.L., Carvalho, J.E., Ruiz, A.L.T.G., Nakamura, C.V., Silva, C.C. (2017). Evaluation of antiproliferative and antileishmanial activities of R-(+)-limonene-derived 2-amino-5-aryl-1,3,4-thiadiazoles. Revista Virtual de Química, 9, 1285-1302.
Vigushin, D. M., Poon, G. K., Boddy, A., English, J., Halbert, G. W., Pagonis, C., Jarman, M., & Coombes, R. C. (1998). Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer. Cancer Research Campaign Phase I/II Clinical Trials Committee. Cancer chemotherapy and pharmacology, 42 (2), 111–117.
Villamizar-Mogotocoro, A. F., Vargas-Méndez, L. Y., & Kouznetsov, V. V. (2020). Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis. European Journal of Pharmaceutical Sciences, 151, 105374.
Zhao, Z., Shi, Z., Liu, M., & Liu, X. (2012). Microwave-assisted synthesis and in vitro antibacterial activity of novel steroidal thiosemicarbazone derivatives. Bioorganic & medicinal chemistry letters, 22(24), 7730–7734.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fabio Vandresen; Sabrina Alencar de Almeida-Batista ; Maria Eduarda Bueno Caldeira; Richard de Albuquerque Felizola Romeral; Celso Vataru Nakamura; Ana Lucia Tasca Góes Ruiz; Cleuza Conceição da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.