The use of textile fibers impregnated with silver nanoparticles against infectious diseases, its health risks and health regulation




Silver nanoparticles; COVID-19; SARS‐CoV‐2; Textile fibers; Regulation.


Introduction: The emergence of the pandemic caused by the new coronavirus has become one of the greatest challenges of the 21st century. The use of nanotechnology in textile fibers has the potential to become a resource for coping with the pandemic. In this field, fabrics impregnated with silver nanoparticles (AgNP) deserve to be highlighted, thanks to their antiviral and antibacterial attributes. Objectives: Thus, this integrative review aimed to evaluate its applications, antimicrobial efficacy, risks and regulation in order to contribute to the fight against the COVID-19 pandemic, as well as other infectious diseases. Methodology: To carry out this study, searches were carried out in the literature. Results and discussion: The results demonstrated that tissue-impregnated AgNPs can have wide application in the medical field. The literature also pointed out a relevant antimicrobial capacity of AgNPs, however this capacity seems to be related to their diameter and shape. Most nanomaterials are classified as GRAS, however this classification was made by extrapolating the data obtained in non-nanometric forms. In general, information on the bioavailability and toxicokinetics of nanomaterials is poorly known. In regulatory terms, despite recent advances, this is a topic still under discussion. Conclusions: Although there are still many regulatory gaps on the subject, the use of AgNP, not only in textile fibers, can become a valuable resource, not only for fighting the COVD-19 pandemic, but also for other diseases caused by microorganisms.


Allan, J., Belz, S., Hoeveler, A., Hugas, M., Okuda, H., Patri, A., Rauscher, H., Silva, P., Slikker, W., Sokull-Kluettgen, B., Tong, W., & Anklam, E. (2021). Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regulatory Toxicology and Pharmacology, 122, 104885.

Anees Ahmad, S., Sachi Das, S., Khatoon, A., Tahir Ansari, M., Afzal, Mohd., Saquib Hasnain, M., & Kumar Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769.

Anvisa. (2021). Nota Técnica 20/2021—COSAN/GHCOS/DIRE3/ANVISA — Português (Brasil).

Azizi-Lalabadi, M., Garavand, F., & Jafari, S. M. (2021). Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Advances in Colloid and Interface Science, 293, 102440.

Barata-Silva, C., Vicentini-Neto, S. A., Magalhães, C. D., Jacob, S. do C., Moreira, J. C., & Santos, L. M. G. (2021). Avaliação da qualidade das máscaras comercializadas no Brasil em tempos de pandemia da COVID-19 quanto à presença de prata e de nanopartículas de prata. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 9(1), 29–35.

Barillo, D. J., & Marx, D. E. (2014). Silver in medicine: A brief history BC 335 to present. Burns: Journal of the International Society for Burn Injuries, 40 Suppl 1, S3-8.

Brasil. (2019). PORTARIA No 3.459, DE 26 DE JULHO DE 2019—DOU - Imprensa Nacional.

Brito, S. B. P., Braga, I. O., Cunha, C. C., Palácio, M. A. V., & Takenami, I. (2020). Pandemia da COVID-19: O maior desafio do século XXI. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 8(2), 54–63.

Canada, H. (2011, maio 26). Policy Statement on Health Canada’s Working Definition for Nanomaterial [Policies;notices].

Chalmers University of Technology. (2012). Nanosilver from clothing can pose major environmental problems. ScienceDaily.

Commissioner, O. of the. (2018). Office of the Commissioner Nanotechnology Programs. FDA.

Commissioner, O. of the. (2019). FDA’s Approach to Regulation of Nanotechnology Products. FDA.

Commissioner, O. of the. (2021). Nanotechnology Task Force. FDA.

ECHA. ([s.d.]). Nanomaterials—ECHA. Recuperado 19 de setembro de 2021, de

EFSA Scientific Committee. (2021). Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal, 2011;9(5):2140.

Eleraky, N. E., Allam, A., Hassan, S. B., & Omar, M. M. (2020). Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 12(2), 142.

European Commission. (2021, outubro 16). Horizon 2020: Development and implementation of Grouping and Safe-by-Design approaches within regulatory frameworks. NanoREG II Project.

European Food Safety Authority & Scientific Committee and Emerging Risks Unit. (2017). Nanonetwork.

Fatima, F., Siddiqui, S., & Khan, W. A. (2021). Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biological Trace Element Research, 199(7), 2552–2564.

Ferdous, Z., & Nemmar, A. (2020). Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 21(7), E2375.

Food and Drug Adminstration & Office of the Commissioner. (2019, abril 20). Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. U.S. Food and Drug Administration; FDA.

Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules (Basel, Switzerland), 16(10), 8894–8918.

Granados, A., Pleixats, R., & Vallribera, A. (2021). Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules (Basel, Switzerland), 26(10), 3008.

Hamouda, T., Ibrahim, H. M., Kafafy, H. H., Mashaly, H. M., Mohamed, N. H., & Aly, N. M. (2021). Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. International Journal of Biological Macromolecules, 181, 990–1002.

Hasan, J., Pyke, A., Nair, N., Yarlagadda, T., Will, G., Spann, K., & Yarlagadda, P. K. D. V. (2020). Antiviral Nanostructured Surfaces Reduce the Viability of SARS-CoV-2. ACS Biomaterials Science & Engineering, 6(9), 4858–4861.

Idumah, C. I. (2020). Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19. The Journal of The Textile Institute, 0(0), 1–21.

Irfan, M., Perero, S., Miola, M., Maina, G., Ferri, A., Ferraris, M., & Balagna, C. (2017). Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose, 24(5), 2331–2345.

ISO. ([s.d.]). ISO/TC 229—Nanotechnologies. ISO. Recuperado 19 de setembro de 2021, de

Jeremiah, S. S., Miyakawa, K., Morita, T., Yamaoka, Y., & Ryo, A. (2020). Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 533(1), 195–200.

Jotz, G. P., & Matos, F. C. M. de. (2021). COVID-19: Priority Use of N95 Mask or Double Mask. International Archives of Otorhinolaryngology, 25(2), e175–e176.

Karagoz, S., Kiremitler, N. B., Sarp, G., Pekdemir, S., Salem, S., Goksu, A. G., Onses, M. S., Sozdutmaz, I., Sahmetlioglu, E., Ozkara, E. S., Ceylan, A., & Yilmaz, E. (2021). Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Applied Materials & Interfaces, 13(4), 5678–5690.

Kharaghani, D., Khan, M. Q., Shahrzad, A., Inoue, Y., Yamamoto, T., Rozet, S., Tamada, Y., & Kim, I. S. (2018). Preparation and In-Vitro Assessment of Hierarchal Organized Antibacterial Breath Mask Based on Polyacrylonitrile/Silver (PAN/AgNPs) Nanofiber. Nanomaterials (Basel, Switzerland), 8(7), E461.

Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20(2), E449.

Mackevica, A., & Foss Hansen, S. (2016). Release of nanomaterials from solid nanocomposites and consumer exposure assessment—A forward-looking review. Nanotoxicology, 10(6), 641–653.

Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P.-C., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology. B, Biology, 205, 111823.

MCTIC. ([s.d.]). Ministerio da Ciencia, Tecnologia e Inovação. Recuperado 13 de outubro de 2021, de

Megan Cerullo. (2020, novembro 6). Supplies of N95 masks running low as COVID-19 surges. CBS News.

Menzel, M., & Fittschen, U. E. A. (2014). Total reflection X-ray fluorescence analysis of airborne silver nanoparticles from fabrics. Analytical Chemistry, 86(6), 3053–3059.

Misirli, G. M., Sridharan, K., & Abrantes, S. M. P. (2021). A review on nanostructured silver as a basic ingredient in medicine: Physicochemical parameters and characterization. Beilstein Journal of Nanotechnology, 12, 440–461.

O’Dowd, K., Nair, K. M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., & Pillai, S. C. (2020). Face Masks and Respirators in the Fight against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives. Materials (Basel, Switzerland), 13(15), E3363.

OECD. (2021a). Key nanotechnology indicators—OECD.

OECD. (2021b). Publications in the Series on the Safety of Manufactured Nanomaterials—OECD.

Pilaquinga, F., Morey, J., Torres, M., Seqqat, R., & Piña, M. de L. N. (2021). Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, e1707.

Rai, M., Deshmukh, S. D., Ingle, A. P., Gupta, I. R., Galdiero, M., & Galdiero, S. (2016). Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology, 42(1), 46–56.

Ramaiah, G. B., Tegegne, A., & Melese, B. (2021). Developments in Nano-materials and Analysing its role in Fighting COVID-19. Materials Today. Proceedings.

Reed, R. B., Zaikova, T., Barber, A., Simonich, M., Lankone, R., Marco, M., Hristovski, K., Herckes, P., Passantino, L., Fairbrother, D. H., Tanguay, R., Ranville, J. F., Hutchison, J. E., & Westerhoff, P. K. (2016). Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environmental Science & Technology, 50(7), 4018–4026.

Research and Markets ltd. (2022). Nanotechnology: Global Market Trajectory & Analytics.

Rezvani E, Rafferty A, McGuinness C, & Kennedy J. (2019). Adverse effects of nanosilver on human health and the environment. ET, 94.

Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 10(8), 1566.

Sanchez-Guzman, D., Le Guen, P., Villeret, B., Sola, N., Le Borgne, R., Guyard, A., Kemmel, A., Crestani, B., Sallenave, J.-M., & Garcia-Verdugo, I. (2019). Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials, 217, 119308.

Soiza, R. L., Donaldson, A. I. C., & Myint, P. K. (2018). The pale evidence for treatment of iron-deficiency anaemia in older people. Therapeutic Advances in Drug Safety, 9(6), 259–261.

sSchäfer, B., Brocke, J. V., Epp, A., Götz, M., Herzberg, F., Kneuer, C., Sommer, Y., Tentschert, J., Noll, M., Günther, I., Banasiak, U., Böl, G.-F., Lampen, A., Luch, A., & Hensel, A. (2013). State of the art in human risk assessment of silver compounds in consumer products: A conference report on silver and nanosilver held at the BfR in 2012. Archives of Toxicology, 87(12), 2249–2262.

Tobler, J. P., & Rocha, H. V. A. (2020). Bases regulatórias para a avaliação da segurança de medicamentos à base de nanotecnologia. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 8(2), 64–74.

US EPA, O. (2015, março 27). Control of Nanoscale Materials under the Toxic Substances Control Act [Collections and Lists].

Valdez-Salas, B., Beltran-Partida, E., Cheng, N., Salvador-Carlos, J., Valdez-Salas, E. A., Curiel-Alvarez, M., & Ibarra-Wiley, R. (2021). Promotion of Surgical Masks Antimicrobial Activity by Disinfection and Impregnation with Disinfectant Silver Nanoparticles. International Journal of Nanomedicine, 16, 2689–2702.

World Health Organization. (2003). WHO Framework Convention on Tobacco Control.

Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., Skorobogatiy, M., Khademhosseini, A., & Yun, S. H. (2016). Nanotechnology in Textiles. ACS Nano, 10(3), 3042–3068.

Zhong, H., Zhu, Z., You, P., Lin, J., Cheung, C. F., Lu, V. L., Yan, F., Chan, C.-Y., & Li, G. (2020). Plasmonic and Superhydrophobic Self-Decontaminating N95 Respirators. ACS Nano, 14(7), 8846–8854.

Zorraquín-Peña, I., Cueva, C., Bartolomé, B., & Moreno-Arribas, M. V. (2020). Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms, 8(1).



How to Cite

PEREIRA, R. A.; SANTOS, L. M. G. dos; SILVA, C. B. .; SILVA, A. L. O. da .; JACOB, S. do C. . The use of textile fibers impregnated with silver nanoparticles against infectious diseases, its health risks and health regulation. Research, Society and Development, [S. l.], v. 11, n. 6, p. e7311628704, 2022. DOI: 10.33448/rsd-v11i6.28704. Disponível em: Acesso em: 29 may. 2022.



Review Article