The use of textile fibers impregnated with silver nanoparticles against infectious diseases, its health risks and health regulation

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28704

Keywords:

Silver nanoparticles; COVID-19; SARS‐CoV‐2; Textile fibers; Regulation.

Abstract

Introduction: The emergence of the pandemic caused by the new coronavirus has become one of the greatest challenges of the 21st century. The use of nanotechnology in textile fibers has the potential to become a resource for coping with the pandemic. In this field, fabrics impregnated with silver nanoparticles (AgNP) deserve to be highlighted, thanks to their antiviral and antibacterial attributes. Objectives: Thus, this integrative review aimed to evaluate its applications, antimicrobial efficacy, risks and regulation in order to contribute to the fight against the COVID-19 pandemic, as well as other infectious diseases. Methodology: To carry out this study, searches were carried out in the literature. Results and discussion: The results demonstrated that tissue-impregnated AgNPs can have wide application in the medical field. The literature also pointed out a relevant antimicrobial capacity of AgNPs, however this capacity seems to be related to their diameter and shape. Most nanomaterials are classified as GRAS, however this classification was made by extrapolating the data obtained in non-nanometric forms. In general, information on the bioavailability and toxicokinetics of nanomaterials is poorly known. In regulatory terms, despite recent advances, this is a topic still under discussion. Conclusions: Although there are still many regulatory gaps on the subject, the use of AgNP, not only in textile fibers, can become a valuable resource, not only for fighting the COVD-19 pandemic, but also for other diseases caused by microorganisms.

References

Allan, J., Belz, S., Hoeveler, A., Hugas, M., Okuda, H., Patri, A., Rauscher, H., Silva, P., Slikker, W., Sokull-Kluettgen, B., Tong, W., & Anklam, E. (2021). Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regulatory Toxicology and Pharmacology, 122, 104885. https://doi.org/10.1016/j.yrtph.2021.104885

Anees Ahmad, S., Sachi Das, S., Khatoon, A., Tahir Ansari, M., Afzal, Mohd., Saquib Hasnain, M., & Kumar Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769. https://doi.org/10.1016/j.mset.2020.09.002

Anvisa. (2021). Nota Técnica 20/2021—COSAN/GHCOS/DIRE3/ANVISA — Português (Brasil). https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/saneantes/notas-tecnicas/nota-tecnica-20-2021-cosan-ghcos-dire3-anvisa/view

Azizi-Lalabadi, M., Garavand, F., & Jafari, S. M. (2021). Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Advances in Colloid and Interface Science, 293, 102440. https://doi.org/10.1016/j.cis.2021.102440

Barata-Silva, C., Vicentini-Neto, S. A., Magalhães, C. D., Jacob, S. do C., Moreira, J. C., & Santos, L. M. G. (2021). Avaliação da qualidade das máscaras comercializadas no Brasil em tempos de pandemia da COVID-19 quanto à presença de prata e de nanopartículas de prata. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 9(1), 29–35. https://doi.org/10.22239/2317-269x.01766

Barillo, D. J., & Marx, D. E. (2014). Silver in medicine: A brief history BC 335 to present. Burns: Journal of the International Society for Burn Injuries, 40 Suppl 1, S3-8. https://doi.org/10.1016/j.burns.2014.09.009

Brasil. (2019). PORTARIA No 3.459, DE 26 DE JULHO DE 2019—DOU - Imprensa Nacional. https://www.in.gov.br/web/dou

Brito, S. B. P., Braga, I. O., Cunha, C. C., Palácio, M. A. V., & Takenami, I. (2020). Pandemia da COVID-19: O maior desafio do século XXI. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 8(2), 54–63. https://doi.org/10.22239/2317-269X.01531

Canada, H. (2011, maio 26). Policy Statement on Health Canada’s Working Definition for Nanomaterial [Policies;notices]. https://www.canada.ca/en/health-canada/services/science-research/reports-publications/nanomaterial/policy-statement-health-canada-working-definition.html

Chalmers University of Technology. (2012). Nanosilver from clothing can pose major environmental problems. ScienceDaily. https://www.sciencedaily.com/releases/2012/11/121101073002.htm

Commissioner, O. of the. (2018). Office of the Commissioner Nanotechnology Programs. FDA. https://www.fda.gov/science-research/nanotechnology-programs-fda/office-commissioner-nanotechnology-programs

Commissioner, O. of the. (2019). FDA’s Approach to Regulation of Nanotechnology Products. FDA. https://www.fda.gov/science-research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products

Commissioner, O. of the. (2021). Nanotechnology Task Force. FDA. https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force

ECHA. ([s.d.]). Nanomaterials—ECHA. Recuperado 19 de setembro de 2021, de https://echa.europa.eu/regulations/nanomaterials

EFSA Scientific Committee. (2021). Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal, 2011;9(5):2140. https://doi.org/10.2903/j.efsa.2011.2140

Eleraky, N. E., Allam, A., Hassan, S. B., & Omar, M. M. (2020). Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 12(2), 142. https://doi.org/10.3390/pharmaceutics12020142

European Commission. (2021, outubro 16). Horizon 2020: Development and implementation of Grouping and Safe-by-Design approaches within regulatory frameworks. NanoREG II Project. https://cordis.europa.eu/project/id/646221

European Food Safety Authority & Scientific Committee and Emerging Risks Unit. (2017). Nanonetwork. https://www.efsa.europa.eu/sites/default/files/Nanonetwork.pdf

Fatima, F., Siddiqui, S., & Khan, W. A. (2021). Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biological Trace Element Research, 199(7), 2552–2564. https://doi.org/10.1007/s12011-020-02394-3

Ferdous, Z., & Nemmar, A. (2020). Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 21(7), E2375. https://doi.org/10.3390/ijms21072375

Food and Drug Adminstration & Office of the Commissioner. (2019, abril 20). Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. U.S. Food and Drug Administration; FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology

Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules (Basel, Switzerland), 16(10), 8894–8918. https://doi.org/10.3390/molecules16108894

Granados, A., Pleixats, R., & Vallribera, A. (2021). Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules (Basel, Switzerland), 26(10), 3008. https://doi.org/10.3390/molecules26103008

Hamouda, T., Ibrahim, H. M., Kafafy, H. H., Mashaly, H. M., Mohamed, N. H., & Aly, N. M. (2021). Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. International Journal of Biological Macromolecules, 181, 990–1002. https://doi.org/10.1016/j.ijbiomac.2021.04.071

Hasan, J., Pyke, A., Nair, N., Yarlagadda, T., Will, G., Spann, K., & Yarlagadda, P. K. D. V. (2020). Antiviral Nanostructured Surfaces Reduce the Viability of SARS-CoV-2. ACS Biomaterials Science & Engineering, 6(9), 4858–4861. https://doi.org/10.1021/acsbiomaterials.0c01091

Idumah, C. I. (2020). Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19. The Journal of The Textile Institute, 0(0), 1–21. https://doi.org/10.1080/00405000.2020.1858600

Irfan, M., Perero, S., Miola, M., Maina, G., Ferri, A., Ferraris, M., & Balagna, C. (2017). Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose, 24(5), 2331–2345. https://doi.org/10.1007/s10570-017-1232-y

ISO. ([s.d.]). ISO/TC 229—Nanotechnologies. ISO. Recuperado 19 de setembro de 2021, de https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/committee/38/19/381983.html

Jeremiah, S. S., Miyakawa, K., Morita, T., Yamaoka, Y., & Ryo, A. (2020). Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 533(1), 195–200. https://doi.org/10.1016/j.bbrc.2020.09.018

Jotz, G. P., & Matos, F. C. M. de. (2021). COVID-19: Priority Use of N95 Mask or Double Mask. International Archives of Otorhinolaryngology, 25(2), e175–e176. https://doi.org/10.1055/s-0041-1728716

Karagoz, S., Kiremitler, N. B., Sarp, G., Pekdemir, S., Salem, S., Goksu, A. G., Onses, M. S., Sozdutmaz, I., Sahmetlioglu, E., Ozkara, E. S., Ceylan, A., & Yilmaz, E. (2021). Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Applied Materials & Interfaces, 13(4), 5678–5690. https://doi.org/10.1021/acsami.0c15606

Kharaghani, D., Khan, M. Q., Shahrzad, A., Inoue, Y., Yamamoto, T., Rozet, S., Tamada, Y., & Kim, I. S. (2018). Preparation and In-Vitro Assessment of Hierarchal Organized Antibacterial Breath Mask Based on Polyacrylonitrile/Silver (PAN/AgNPs) Nanofiber. Nanomaterials (Basel, Switzerland), 8(7), E461. https://doi.org/10.3390/nano8070461

Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20(2), E449. https://doi.org/10.3390/ijms20020449

Mackevica, A., & Foss Hansen, S. (2016). Release of nanomaterials from solid nanocomposites and consumer exposure assessment—A forward-looking review. Nanotoxicology, 10(6), 641–653. https://doi.org/10.3109/17435390.2015.1132346

Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P.-C., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology. B, Biology, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823

MCTIC. ([s.d.]). Ministerio da Ciencia, Tecnologia e Inovação. Recuperado 13 de outubro de 2021, de https://antigo.mctic.gov.br/mctic/opencms/tecnologia/incentivo_desenvolvimento/sisnano/sisnano.html

Megan Cerullo. (2020, novembro 6). Supplies of N95 masks running low as COVID-19 surges. CBS News. https://www.cbsnews.com/news/ppe-n95-mask-shortage-covid-19/

Menzel, M., & Fittschen, U. E. A. (2014). Total reflection X-ray fluorescence analysis of airborne silver nanoparticles from fabrics. Analytical Chemistry, 86(6), 3053–3059. https://doi.org/10.1021/ac404017u

Misirli, G. M., Sridharan, K., & Abrantes, S. M. P. (2021). A review on nanostructured silver as a basic ingredient in medicine: Physicochemical parameters and characterization. Beilstein Journal of Nanotechnology, 12, 440–461. https://doi.org/10.3762/bjnano.12.36

O’Dowd, K., Nair, K. M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., & Pillai, S. C. (2020). Face Masks and Respirators in the Fight against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives. Materials (Basel, Switzerland), 13(15), E3363. https://doi.org/10.3390/ma13153363

OECD. (2021a). Key nanotechnology indicators—OECD. https://www.oecd.org/sti/emerging-tech/nanotechnology-indicators.htm

OECD. (2021b). Publications in the Series on the Safety of Manufactured Nanomaterials—OECD. https://www.oecd.org/chemicalsafety/nanosafety/publications-series-safety-manufactured-nanomaterials.htm

Pilaquinga, F., Morey, J., Torres, M., Seqqat, R., & Piña, M. de L. N. (2021). Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, e1707. https://doi.org/10.1002/wnan.1707

Rai, M., Deshmukh, S. D., Ingle, A. P., Gupta, I. R., Galdiero, M., & Galdiero, S. (2016). Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology, 42(1), 46–56. https://doi.org/10.3109/1040841X.2013.879849

Ramaiah, G. B., Tegegne, A., & Melese, B. (2021). Developments in Nano-materials and Analysing its role in Fighting COVID-19. Materials Today. Proceedings. https://doi.org/10.1016/j.matpr.2021.05.020

Reed, R. B., Zaikova, T., Barber, A., Simonich, M., Lankone, R., Marco, M., Hristovski, K., Herckes, P., Passantino, L., Fairbrother, D. H., Tanguay, R., Ranville, J. F., Hutchison, J. E., & Westerhoff, P. K. (2016). Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environmental Science & Technology, 50(7), 4018–4026. https://doi.org/10.1021/acs.est.5b06043

Research and Markets ltd. (2022). Nanotechnology: Global Market Trajectory & Analytics. https://www.researchandmarkets.com/reports/338364/nanotechnology_global_market_trajectory_and

Rezvani E, Rafferty A, McGuinness C, & Kennedy J. (2019). Adverse effects of nanosilver on human health and the environment. ET, 94. https://doi.org/10.1016/j.actbio.2019.05.042

Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 10(8), 1566. https://doi.org/10.3390/nano10081566

Sanchez-Guzman, D., Le Guen, P., Villeret, B., Sola, N., Le Borgne, R., Guyard, A., Kemmel, A., Crestani, B., Sallenave, J.-M., & Garcia-Verdugo, I. (2019). Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials, 217, 119308. https://doi.org/10.1016/j.biomaterials.2019.119308

Soiza, R. L., Donaldson, A. I. C., & Myint, P. K. (2018). The pale evidence for treatment of iron-deficiency anaemia in older people. Therapeutic Advances in Drug Safety, 9(6), 259–261. https://doi.org/10.1177/2042098618769568

sSchäfer, B., Brocke, J. V., Epp, A., Götz, M., Herzberg, F., Kneuer, C., Sommer, Y., Tentschert, J., Noll, M., Günther, I., Banasiak, U., Böl, G.-F., Lampen, A., Luch, A., & Hensel, A. (2013). State of the art in human risk assessment of silver compounds in consumer products: A conference report on silver and nanosilver held at the BfR in 2012. Archives of Toxicology, 87(12), 2249–2262. https://doi.org/10.1007/s00204-013-1083-8

Tobler, J. P., & Rocha, H. V. A. (2020). Bases regulatórias para a avaliação da segurança de medicamentos à base de nanotecnologia. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 8(2), 64–74. https://doi.org/10.22239/2317-269X.01358

US EPA, O. (2015, março 27). Control of Nanoscale Materials under the Toxic Substances Control Act [Collections and Lists]. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under

Valdez-Salas, B., Beltran-Partida, E., Cheng, N., Salvador-Carlos, J., Valdez-Salas, E. A., Curiel-Alvarez, M., & Ibarra-Wiley, R. (2021). Promotion of Surgical Masks Antimicrobial Activity by Disinfection and Impregnation with Disinfectant Silver Nanoparticles. International Journal of Nanomedicine, 16, 2689–2702. https://doi.org/10.2147/IJN.S301212

World Health Organization. (2003). WHO Framework Convention on Tobacco Control. https://apps.who.int/iris/rest/bitstreams/50793/retrieve

Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., Skorobogatiy, M., Khademhosseini, A., & Yun, S. H. (2016). Nanotechnology in Textiles. ACS Nano, 10(3), 3042–3068. https://doi.org/10.1021/acsnano.5b08176

Zhong, H., Zhu, Z., You, P., Lin, J., Cheung, C. F., Lu, V. L., Yan, F., Chan, C.-Y., & Li, G. (2020). Plasmonic and Superhydrophobic Self-Decontaminating N95 Respirators. ACS Nano, 14(7), 8846–8854. https://doi.org/10.1021/acsnano.0c03504

Zorraquín-Peña, I., Cueva, C., Bartolomé, B., & Moreno-Arribas, M. V. (2020). Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010132

Published

20/04/2022

How to Cite

PEREIRA, R. A.; SANTOS, L. M. G. dos; SILVA, C. B. .; SILVA, A. L. O. da .; JACOB, S. do C. . The use of textile fibers impregnated with silver nanoparticles against infectious diseases, its health risks and health regulation. Research, Society and Development, [S. l.], v. 11, n. 6, p. e7311628704, 2022. DOI: 10.33448/rsd-v11i6.28704. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28704. Acesso em: 15 jan. 2025.

Issue

Section

Review Article