O uso de fibras têxteis impregnadas com nanopartículas de prata para enfretamento de doenças infeciosas, seus riscos à saúde e a sua regulação sanitária
DOI:
https://doi.org/10.33448/rsd-v11i6.28704Palavras-chave:
Nanopartículas de plata; COVID-19; SARS-CoV-2; Fibras textiles; Regulación.Resumo
Introdução: O surgimento da pandemia causada pelo novo Coronavírus, tem se tornado um dos grandes desafios do século XXI. O uso da nanotecnologia em fibras têxteis tem potencial para se tornar um recurso para o enfretamento da pandemia. Nesse campo, merecem destaque os tecidos impregnados com nanopartículas de prata (AgNP), graças a seus atributos antivirais e anrtibacterianos. Objetivos: Essa revisão integrativa visou avaliar suas aplicações, eficácia antimicrobiana, riscos e regulação de forma a contribuir ao combate a pandemia de COVID-19, assim como de outras doenças infeciosas. Metodologia: Para a realização desse estudo foram realizadas buscas na literatura. Resultados e Discussão: Os resultados demonstraram que as AgNPs impregnadas em tecidos podem ter uma ampla aplicação no campo médico. A literatura apontou também uma relevante capacidade antimicrobiana das AgNPs, contudo essa capacidade parece ter relação com seu diâmetro e forma. Grande parte dos nanomateriais são classificados como GRAS, entretanto essa classificação foi feita pela extrapolação dos dados obtidos em formas não nanométricas. De maneira geral as informações sobre a biodisponibilidade e toxicocinética de nanomateriais são pouco conhecidas. Em termos regulatórios, apesar de avanços recentes, trata-se de um tema ainda em discussão. Conclusões: Apesar de ainda existirem muitas lacunas regulatórias no tema, o uso das AgNP, não somente em fibras têxteis, pode se tornar um recurso valioso, não somente para o enfrentamento da pandemia de COVD-19, mas como de outras doenças causadas por microrganismos.
Referências
Allan, J., Belz, S., Hoeveler, A., Hugas, M., Okuda, H., Patri, A., Rauscher, H., Silva, P., Slikker, W., Sokull-Kluettgen, B., Tong, W., & Anklam, E. (2021). Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regulatory Toxicology and Pharmacology, 122, 104885. https://doi.org/10.1016/j.yrtph.2021.104885
Anees Ahmad, S., Sachi Das, S., Khatoon, A., Tahir Ansari, M., Afzal, Mohd., Saquib Hasnain, M., & Kumar Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769. https://doi.org/10.1016/j.mset.2020.09.002
Anvisa. (2021). Nota Técnica 20/2021—COSAN/GHCOS/DIRE3/ANVISA — Português (Brasil). https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/saneantes/notas-tecnicas/nota-tecnica-20-2021-cosan-ghcos-dire3-anvisa/view
Azizi-Lalabadi, M., Garavand, F., & Jafari, S. M. (2021). Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Advances in Colloid and Interface Science, 293, 102440. https://doi.org/10.1016/j.cis.2021.102440
Barata-Silva, C., Vicentini-Neto, S. A., Magalhães, C. D., Jacob, S. do C., Moreira, J. C., & Santos, L. M. G. (2021). Avaliação da qualidade das máscaras comercializadas no Brasil em tempos de pandemia da COVID-19 quanto à presença de prata e de nanopartículas de prata. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 9(1), 29–35. https://doi.org/10.22239/2317-269x.01766
Barillo, D. J., & Marx, D. E. (2014). Silver in medicine: A brief history BC 335 to present. Burns: Journal of the International Society for Burn Injuries, 40 Suppl 1, S3-8. https://doi.org/10.1016/j.burns.2014.09.009
Brasil. (2019). PORTARIA No 3.459, DE 26 DE JULHO DE 2019—DOU - Imprensa Nacional. https://www.in.gov.br/web/dou
Brito, S. B. P., Braga, I. O., Cunha, C. C., Palácio, M. A. V., & Takenami, I. (2020). Pandemia da COVID-19: O maior desafio do século XXI. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 8(2), 54–63. https://doi.org/10.22239/2317-269X.01531
Canada, H. (2011, maio 26). Policy Statement on Health Canada’s Working Definition for Nanomaterial [Policies;notices]. https://www.canada.ca/en/health-canada/services/science-research/reports-publications/nanomaterial/policy-statement-health-canada-working-definition.html
Chalmers University of Technology. (2012). Nanosilver from clothing can pose major environmental problems. ScienceDaily. https://www.sciencedaily.com/releases/2012/11/121101073002.htm
Commissioner, O. of the. (2018). Office of the Commissioner Nanotechnology Programs. FDA. https://www.fda.gov/science-research/nanotechnology-programs-fda/office-commissioner-nanotechnology-programs
Commissioner, O. of the. (2019). FDA’s Approach to Regulation of Nanotechnology Products. FDA. https://www.fda.gov/science-research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products
Commissioner, O. of the. (2021). Nanotechnology Task Force. FDA. https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force
ECHA. ([s.d.]). Nanomaterials—ECHA. Recuperado 19 de setembro de 2021, de https://echa.europa.eu/regulations/nanomaterials
EFSA Scientific Committee. (2021). Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal, 2011;9(5):2140. https://doi.org/10.2903/j.efsa.2011.2140
Eleraky, N. E., Allam, A., Hassan, S. B., & Omar, M. M. (2020). Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 12(2), 142. https://doi.org/10.3390/pharmaceutics12020142
European Commission. (2021, outubro 16). Horizon 2020: Development and implementation of Grouping and Safe-by-Design approaches within regulatory frameworks. NanoREG II Project. https://cordis.europa.eu/project/id/646221
European Food Safety Authority & Scientific Committee and Emerging Risks Unit. (2017). Nanonetwork. https://www.efsa.europa.eu/sites/default/files/Nanonetwork.pdf
Fatima, F., Siddiqui, S., & Khan, W. A. (2021). Nanoparticles as Novel Emerging Therapeutic Antibacterial Agents in the Antibiotics Resistant Era. Biological Trace Element Research, 199(7), 2552–2564. https://doi.org/10.1007/s12011-020-02394-3
Ferdous, Z., & Nemmar, A. (2020). Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 21(7), E2375. https://doi.org/10.3390/ijms21072375
Food and Drug Adminstration & Office of the Commissioner. (2019, abril 20). Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. U.S. Food and Drug Administration; FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology
Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules (Basel, Switzerland), 16(10), 8894–8918. https://doi.org/10.3390/molecules16108894
Granados, A., Pleixats, R., & Vallribera, A. (2021). Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules (Basel, Switzerland), 26(10), 3008. https://doi.org/10.3390/molecules26103008
Hamouda, T., Ibrahim, H. M., Kafafy, H. H., Mashaly, H. M., Mohamed, N. H., & Aly, N. M. (2021). Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. International Journal of Biological Macromolecules, 181, 990–1002. https://doi.org/10.1016/j.ijbiomac.2021.04.071
Hasan, J., Pyke, A., Nair, N., Yarlagadda, T., Will, G., Spann, K., & Yarlagadda, P. K. D. V. (2020). Antiviral Nanostructured Surfaces Reduce the Viability of SARS-CoV-2. ACS Biomaterials Science & Engineering, 6(9), 4858–4861. https://doi.org/10.1021/acsbiomaterials.0c01091
Idumah, C. I. (2020). Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19. The Journal of The Textile Institute, 0(0), 1–21. https://doi.org/10.1080/00405000.2020.1858600
Irfan, M., Perero, S., Miola, M., Maina, G., Ferri, A., Ferraris, M., & Balagna, C. (2017). Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose, 24(5), 2331–2345. https://doi.org/10.1007/s10570-017-1232-y
ISO. ([s.d.]). ISO/TC 229—Nanotechnologies. ISO. Recuperado 19 de setembro de 2021, de https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/committee/38/19/381983.html
Jeremiah, S. S., Miyakawa, K., Morita, T., Yamaoka, Y., & Ryo, A. (2020). Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 533(1), 195–200. https://doi.org/10.1016/j.bbrc.2020.09.018
Jotz, G. P., & Matos, F. C. M. de. (2021). COVID-19: Priority Use of N95 Mask or Double Mask. International Archives of Otorhinolaryngology, 25(2), e175–e176. https://doi.org/10.1055/s-0041-1728716
Karagoz, S., Kiremitler, N. B., Sarp, G., Pekdemir, S., Salem, S., Goksu, A. G., Onses, M. S., Sozdutmaz, I., Sahmetlioglu, E., Ozkara, E. S., Ceylan, A., & Yilmaz, E. (2021). Antibacterial, Antiviral, and Self-Cleaning Mats with Sensing Capabilities Based on Electrospun Nanofibers Decorated with ZnO Nanorods and Ag Nanoparticles for Protective Clothing Applications. ACS Applied Materials & Interfaces, 13(4), 5678–5690. https://doi.org/10.1021/acsami.0c15606
Kharaghani, D., Khan, M. Q., Shahrzad, A., Inoue, Y., Yamamoto, T., Rozet, S., Tamada, Y., & Kim, I. S. (2018). Preparation and In-Vitro Assessment of Hierarchal Organized Antibacterial Breath Mask Based on Polyacrylonitrile/Silver (PAN/AgNPs) Nanofiber. Nanomaterials (Basel, Switzerland), 8(7), E461. https://doi.org/10.3390/nano8070461
Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20(2), E449. https://doi.org/10.3390/ijms20020449
Mackevica, A., & Foss Hansen, S. (2016). Release of nanomaterials from solid nanocomposites and consumer exposure assessment—A forward-looking review. Nanotoxicology, 10(6), 641–653. https://doi.org/10.3109/17435390.2015.1132346
Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P.-C., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology. B, Biology, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823
MCTIC. ([s.d.]). Ministerio da Ciencia, Tecnologia e Inovação. Recuperado 13 de outubro de 2021, de https://antigo.mctic.gov.br/mctic/opencms/tecnologia/incentivo_desenvolvimento/sisnano/sisnano.html
Megan Cerullo. (2020, novembro 6). Supplies of N95 masks running low as COVID-19 surges. CBS News. https://www.cbsnews.com/news/ppe-n95-mask-shortage-covid-19/
Menzel, M., & Fittschen, U. E. A. (2014). Total reflection X-ray fluorescence analysis of airborne silver nanoparticles from fabrics. Analytical Chemistry, 86(6), 3053–3059. https://doi.org/10.1021/ac404017u
Misirli, G. M., Sridharan, K., & Abrantes, S. M. P. (2021). A review on nanostructured silver as a basic ingredient in medicine: Physicochemical parameters and characterization. Beilstein Journal of Nanotechnology, 12, 440–461. https://doi.org/10.3762/bjnano.12.36
O’Dowd, K., Nair, K. M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., & Pillai, S. C. (2020). Face Masks and Respirators in the Fight against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives. Materials (Basel, Switzerland), 13(15), E3363. https://doi.org/10.3390/ma13153363
OECD. (2021a). Key nanotechnology indicators—OECD. https://www.oecd.org/sti/emerging-tech/nanotechnology-indicators.htm
OECD. (2021b). Publications in the Series on the Safety of Manufactured Nanomaterials—OECD. https://www.oecd.org/chemicalsafety/nanosafety/publications-series-safety-manufactured-nanomaterials.htm
Pilaquinga, F., Morey, J., Torres, M., Seqqat, R., & Piña, M. de L. N. (2021). Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, e1707. https://doi.org/10.1002/wnan.1707
Rai, M., Deshmukh, S. D., Ingle, A. P., Gupta, I. R., Galdiero, M., & Galdiero, S. (2016). Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology, 42(1), 46–56. https://doi.org/10.3109/1040841X.2013.879849
Ramaiah, G. B., Tegegne, A., & Melese, B. (2021). Developments in Nano-materials and Analysing its role in Fighting COVID-19. Materials Today. Proceedings. https://doi.org/10.1016/j.matpr.2021.05.020
Reed, R. B., Zaikova, T., Barber, A., Simonich, M., Lankone, R., Marco, M., Hristovski, K., Herckes, P., Passantino, L., Fairbrother, D. H., Tanguay, R., Ranville, J. F., Hutchison, J. E., & Westerhoff, P. K. (2016). Potential Environmental Impacts and Antimicrobial Efficacy of Silver- and Nanosilver-Containing Textiles. Environmental Science & Technology, 50(7), 4018–4026. https://doi.org/10.1021/acs.est.5b06043
Research and Markets ltd. (2022). Nanotechnology: Global Market Trajectory & Analytics. https://www.researchandmarkets.com/reports/338364/nanotechnology_global_market_trajectory_and
Rezvani E, Rafferty A, McGuinness C, & Kennedy J. (2019). Adverse effects of nanosilver on human health and the environment. ET, 94. https://doi.org/10.1016/j.actbio.2019.05.042
Salleh, A., Naomi, R., Utami, N. D., Mohammad, A. W., Mahmoudi, E., Mustafa, N., & Fauzi, M. B. (2020). The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 10(8), 1566. https://doi.org/10.3390/nano10081566
Sanchez-Guzman, D., Le Guen, P., Villeret, B., Sola, N., Le Borgne, R., Guyard, A., Kemmel, A., Crestani, B., Sallenave, J.-M., & Garcia-Verdugo, I. (2019). Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials, 217, 119308. https://doi.org/10.1016/j.biomaterials.2019.119308
Soiza, R. L., Donaldson, A. I. C., & Myint, P. K. (2018). The pale evidence for treatment of iron-deficiency anaemia in older people. Therapeutic Advances in Drug Safety, 9(6), 259–261. https://doi.org/10.1177/2042098618769568
sSchäfer, B., Brocke, J. V., Epp, A., Götz, M., Herzberg, F., Kneuer, C., Sommer, Y., Tentschert, J., Noll, M., Günther, I., Banasiak, U., Böl, G.-F., Lampen, A., Luch, A., & Hensel, A. (2013). State of the art in human risk assessment of silver compounds in consumer products: A conference report on silver and nanosilver held at the BfR in 2012. Archives of Toxicology, 87(12), 2249–2262. https://doi.org/10.1007/s00204-013-1083-8
Tobler, J. P., & Rocha, H. V. A. (2020). Bases regulatórias para a avaliação da segurança de medicamentos à base de nanotecnologia. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia (Health Surveillance under Debate: Society, Science & Technology) – Visa em Debate, 8(2), 64–74. https://doi.org/10.22239/2317-269X.01358
US EPA, O. (2015, março 27). Control of Nanoscale Materials under the Toxic Substances Control Act [Collections and Lists]. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under
Valdez-Salas, B., Beltran-Partida, E., Cheng, N., Salvador-Carlos, J., Valdez-Salas, E. A., Curiel-Alvarez, M., & Ibarra-Wiley, R. (2021). Promotion of Surgical Masks Antimicrobial Activity by Disinfection and Impregnation with Disinfectant Silver Nanoparticles. International Journal of Nanomedicine, 16, 2689–2702. https://doi.org/10.2147/IJN.S301212
World Health Organization. (2003). WHO Framework Convention on Tobacco Control. https://apps.who.int/iris/rest/bitstreams/50793/retrieve
Yetisen, A. K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M. R., Hinestroza, J. P., Skorobogatiy, M., Khademhosseini, A., & Yun, S. H. (2016). Nanotechnology in Textiles. ACS Nano, 10(3), 3042–3068. https://doi.org/10.1021/acsnano.5b08176
Zhong, H., Zhu, Z., You, P., Lin, J., Cheung, C. F., Lu, V. L., Yan, F., Chan, C.-Y., & Li, G. (2020). Plasmonic and Superhydrophobic Self-Decontaminating N95 Respirators. ACS Nano, 14(7), 8846–8854. https://doi.org/10.1021/acsnano.0c03504
Zorraquín-Peña, I., Cueva, C., Bartolomé, B., & Moreno-Arribas, M. V. (2020). Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms, 8(1). https://doi.org/10.3390/microorganisms8010132
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Renata Aparecida Pereira; Lisia Maria Gobbo dos Santos; Cristiane Barata Silva; André Luiz Oliveira da Silva; Silvana do Couto Jacob
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.