Metabolites produced by microalgae from northeastern Brazil with potential food industry uses

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28724

Keywords:

Cultivo experimental; Biomassa; Composição química.

Abstract

The production potential of metabolites of interest to the food industry was evaluated in 17 microalgae species isolated from natural sources in northeastern Brazil. The species were cultivated to their stationary phase under controlled conditions, when the experiments were interrupted and the dry biomass harvested. We observed differences in their growth parameters, productivity, and the biochemical compositions of their biomasses, with high levels of protein productivity in Monoraphidium litorale D296WC (48.96%), Kirchneriella concorta D498WC (42.49%), Monoraphidium griffithi D499WC (48.37%), Chlamydomonas sp. D530WC (44.80%), and Cosmarium sp cf. depressum D578WC (49.32). The greatest carbohydrate productivities were observed in Xanthonema sp. D464WC (34.15%), K. concorta D498WC (38.95%), and Scenedesmus acuminatus D514WC (36.54%). The three different extraction techniques of microalgae lipids all gave slightly different results, with the method utilizing phospho-vanillin being considered the most rapid and it requires only small quantities of biomass. Unsaturated fatty acids (oleic, linoleic, and linolenic) were encountered at high levels in most of the species, especially α-linolenic acid (ω3), which reached concentrations above 30% in Golenkinia radiata (D325WC). Due to their high productivity, rapid growth, and the large numbers of important dietary metabolites they produce, the species Monoraphidium litorale (D296WC), Xanthonema sp. (D464WC) and Monoraphidium griffithi (D499WC) show significant potential for utilization by the food industry as sources of proteins, lipids, and carbohydrates.

References

Ambrozova, J. V., Misurcova, L., Vicha, R., Machu, L., Samek, D., Baron, M., Mlcek, J., Sochor, J., & Jurikova, T. (2014). Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules, 19(2), 2344–2360. https://doi.org/10.3390/molecules19022344

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extaction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

Calixto, C. D., da Silva Santana, J. K., de Lira, E. B., Sassi, P. G. P., Rosenhaim, R., da Costa Sassi, C. F., da Conceição, M. M., & Sassi, R. (2016b). Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresource Technology, 221, 438–446. https://doi.org/10.1016/j.biortech.2016.09.066

Chen, X., Wakeham, S. G., & Fisher, N. S. (2011). Influence of iron on fatty acid and sterol composition of marine phytoplankton and copepod consumers. Limnology and Oceanography, 56(2), 716–724. https://doi.org/10.4319/lo.2011.56.2.0716

El Arroussi, H., Benhima, R., El Mernissi, N., Bouhfid, R., Tilsaghani, C., Bennis, I., & Wahby, I. (2017). Screening of marine microalgae strains from Moroccan coasts for biodiesel production. Renewable Energy, 113, 1515–1522. https://doi.org/10.1016/j.renene.2017.07.035

Folch, J.; Lees, M.; Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

Guillard, R. R. L.; Lorenzen, C. J. (1972). Yellow-green algae with chlorophyllide c. Journal of Phycology, 8, 10–14.

Karatay, S. E., & Dönmez, G. (2011). Microbial oil production from thermophile cyanobacteria for biodiesel production. Applied Energy, 88(11), 3632–3635. https://doi.org/10.1016/j.apenergy.2011.04.010

Lowry, O.H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Matos, Â. P., Morioka, L. R. I., Sant’Anna, E. S., & França, K. B. (2015). Teores de proteínas e lipídeos de Chlorella sp . cultivada em concentrado de dessalinização residual. Ciência Rural, 45(2), 364–370. https://doi.org/do de dessalinização residual. http://dx.doi.org/10.1590/0103-8478cr20121104

Menezes, R. S., Leles, M. I. G., Soares, A. T., Brandão, P. I., Franco, M., Filho, N. R. A., Sant’anna, C. L., & Vieira, A. A. H. (2013). Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quimica Nova, 36(1), 10–15. https://doi.org/10.1590/S0100-40422013000100003

Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresource Technology, 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077

Moorhead K. & Capelli B. (2011). Spirulina nature’s superfood. (3rd ed.). Kailua-Kona.

Ramluckan, K., Moodley, K. G., & Bux, F. (2014). An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel, 116, 103–108. https://doi.org/10.1016/j.fuel.2013.07.118

Ras, M., Lardon, L., Bruno, S., Bernet, N., & Steyer, J. P. (2011). Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresource Technology, 102(1), 200–206. https://doi.org/10.1016/j.biortech.2010.06.146

Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., & Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 160, 393–400. https://doi.org/10.1016/j.foodchem.2014.03.087

Schulze, C., Strehle, A., Merdivan, S., & Mundt, S. (2017). Carbohydrates in microalgae: Comparative determination by TLC, LC-MS without derivatization, and the photometric thymol-sulfuric acid method. Algal Research, 25, 372–380. https://doi.org/10.1016/j.algal.2017.05.001

Toker, O. S., Konar, N., Palabiyik, I., Rasouli Pirouzian, H., Oba, S., Polat, D. G., Poyrazoglu, E. S., & Sagdic, O. (2018). Formulation of Dark Chocolate as a Carrier to Deliver Eicosapentaenoic and Docosahexaenoic acids: Effects on Product Quality. Food Chemistry, 254, 224–231. https://doi.org/10.1016/j.foodchem.2018.02.019

Toker, O. S., Konar, N., Pirouzian, H. R., Oba, S., Polat, D. G., Palabiyik, İ., Poyrazoglu, E. S., & Sagdic, O. (2018). Developing functional white chocolate by incorporating different forms of EPA and DHA - Effects on product quality. LWT - Food Science and Technology, 87, 177–185. https://doi.org/10.1016/j.lwt.2017.08.087

Verspreet, J., Soetemans, L., Gargan, C., Hayes, M., & Bastiaens, L. (2021). Nutritional profiling and preliminary bioactivity screening of five micro-algae strains cultivated in northwest europe. Foods, 10(7). https://doi.org/10.3390/foods10071516

Downloads

Published

20/04/2022

How to Cite

ARAÚJO, V. B. da S. .; SILVA , V. M. B.; LIRA , E. B. .; CALIXTO, C. D. .; SANTANA, J. K. da S. .; PEREIRA, E. R. de L.; SASSI, C. F. da C. .; CONCEIÇÃO, M. M. da .; SASSI, R. Metabolites produced by microalgae from northeastern Brazil with potential food industry uses. Research, Society and Development, [S. l.], v. 11, n. 6, p. e7411628724, 2022. DOI: 10.33448/rsd-v11i6.28724. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28724. Acesso em: 29 may. 2022.

Issue

Section

Agrarian and Biological Sciences