Solid-state fermentation for low-cost production of biosurfactant by promising Mucor hiemalis UCP 1309

Authors

DOI:

https://doi.org/10.33448/rsd-v11i6.28817

Keywords:

Mucoralean fungus; Static fermentation; Surface tension; Emulsification index; Wheat bran.

Abstract

Biosurfactants are amphipathic molecules with growing worldwide interest because of their low toxicity, high biodegradability and good ecological acceptability. They are produced by microorganisms and between them, filamentous fungi belonging Mucorales order have been reported as promising producers. However, most of these studies still use traditional submerged fermentation, a methodology with technical and economic problems. In this context, this work aimed the production of biosurfactant by Mucor hiemalis UCP 1309 using solid-state fermentation (SSF) as a low-cost alternative technology. Experiments were carried out using seven agro-industrial byproducts and wastes as substrates, supplemented with salt solution containing 5% waste soybean oil (WSO). Medium with the best result in the production of biosurfactant was used in a second fermentation, where a 22 full-factorial design (FFD) was performed to investigate the influence of inoculum size and concentration of WSO on surface tension. The results showed higher reduction of surface tension (to 28.1 mN/m) in fermentation using wheat bran. Also, the statistical analysis demonstrated significant effect of concentration of WSO on surface tension. Produced biosurfactant demonstrated excellent emulsifying properties with WSO, motor oil and burned motor oil, and the emulsions remained stable after 90 days of incubation. Therefore, this work demonstrated SSF as a suitable strategy for getting inexpensive and efficient biosurfactant and expediting its large-scale production. Moreover, we report, for the first time in the international literature, the production of biosurfactant using SSF by a Mucoralean fungus.

Author Biographies

Dayana Montero Rodríguez, Catholic University of Pernambuco

Nucleus of Research in environmenta Sciences- NPCIAMB

Rafael de Souza Mendonça, Catholic University of Pernambuco

Master Course in Development of Environmental   Process 

Adriana Ferreira de Souza , Catholic University of Pernambuco

Nucleus of Research in Environmental Sciences and Biotechnology- NPCIAMB

Isabela Natalia da Silva Ferreira, Catholic University of Pernambuco

Nucelus of Research in environmentalSciences and Biotechnology-NPCIAMB

Rosileide Fontenele da Silva Andrade, Catholic University of Pernambuco

School of Health and Biological Sciences

References

Andrade, R. F., Silva, T. A., Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A., & Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering, 2018. 10.1155/2018/1624573

Araújo, H. W., Andrade, R. F., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves da Silva, C. A., & Campos-Takaki, G. M. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1-13. 10.1186/s12934-018-1046-0

Banat, I. M., Carboué, Q., Saucedo-Castañeda, G., & de Jesús Cázares-Marinero, J. (2021). Biosurfactants: the green generation of speciality chemicals and potential production using solid-state fermentation (SSF) technology. Bioresource Technology, 320, 124222. https://10.1016/j.biortech.2020.124222

Brumano, L. P., Antunes, F. A. F., Souto, S. G., Silva, G. M., Santos, J. C., & da Silva, S. S. (2018). Biosurfactant production by sugarcane bagasse as a renewable alternative for bioremediation process. In: Exploring Microorganisms: Recent Advances in Applied Microbiology, Brown Walker Press, 50.

Camilios-Neto, D., Bugay, C., de Santana-Filho, A. P., Joslin, T., de Souza, L. M., Sassaki, G. L., & Krieger, N. (2011). Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Applied microbiology and biotechnology, 89(5), 1395-1403. 10.1007/s00253-010-2987-3

Cândido, T. R. S., Mendonça, R. S., Lins, U. M. D. B. L., de Souza, A. F., Rodriguez, D. M., de Campos-Takaki, G. M., & da Silva Andrade, R. F. (2022). Production of biosurfactants by Mucoralean fungi isolated from Caatinga bioma soil using industrial waste as renewable substrates. Research, Society and Development, 11(2), e13411225332-e13411225332. 10.33448/rsd-v11i2.25332

Castiglioni, G. L., Stanescu, G., Rocha, L. A. O., & Costa, J. A. V. (2014). Analytical modeling and numerical optimization of the biosurfactants production in solid-state fermentation by Aspergillus fumigatus. Acta Scientiarum. Technology, 36(1), 61-67. 10.4025/actascitechnol.v36i1.17818

Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53(2), 224-229.

Costa, J. A., Treichel, H., Santos, L. O., & Martins, V. G. (2018). Solid-state fermentation for the production of biosurfactants and their applications. In Current developments in biotechnology and bioengineering (pp. 357-372). Elsevier. 10.1016/B978-0-444-63990-5.00016-5

dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. D. S., de Almeida, S. M., Takaki, G. M. D. C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1-12. 10.1080/09593330.2021.1910733

Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M., & da Silva Andrade, R. F. (2020). Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Electronic Journal of Biotechnology, 47, 51-58. 10.1016/j.ejbt.2020.06.006

Freitas, E. L., de Oliveira Lima, S., Montero-Rodríguez, D., da Silva Andrade, R. F., de Campos-Takaki, G. M., & de Araújo, H. W. C. (2022). Avaliação do fungo Penicillium sclerotiorum UCP 1040 na produção de biossurfactante utilizando óleo pós-fritura e milhocina. Research, Society and Development, 11(5), e0411527502-e0411527502. 10.33448/rsd-v11i5.27502

Krieger, N., Neto, D. C., & Mitchell, D. A. (2010). Production of microbial biosurfactants by solid-state cultivation. In: Biosurfactants Advances in Experimental Medicine and Biology, Springer, New York, NY, 672, 203-210.

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156. 10.1016/S0167-7012(01)00259-7

Lima, R. A., Andrade, R. F., Rodríguez, D. M., Araujo, H. W., Santos, V. P., & Campos-Takaki, G. M. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African Journal of Microbiology Research, 11(6), 237-244. 10.5897/AJMR2016.8341

Liu, W. J., Duan, X. D., Wu, L. P., & Masakorala, K. (2018). Biosurfactant production by Pseudomonas aeruginosa SNP0614 and its effect on biodegradation of petroleum. Applied Biochemistry and Microbiology, 54(2), 155-162. 10.1134/S0003683818020060

Lourenço, L. A., Alberton Magina, M. D., Tavares, L. B. B., Guelli Ulson de Souza, S. M. A., García Román, M., & Altmajer Vaz, D. (2018). Biosurfactant production by Trametes versicolor grown on two-phase olive mill waste in solid-state fermentation. Environmental Technology, 39(23), 3066-3076. 10.1080/09593330.2017.1374471

Marcelino, P. R. F., Gonçalves, F., Jimenez, I. M., Carneiro, B. C., Santos, B. B., & da Silva, S. S. (2020). Sustainable production of biosurfactants and their applications. Lignocellulosic Biorefining Technologies, 159-183. 10.1002/9781119568858.ch8

Marques, N. S. A. A., de Lima, T. A., da Silva Andrade, R. F., Júnior, J. F. B., Okada, K., & Takaki, G. M. C. (2019) Lipopeptide biosurfactant produced by Mucor circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Scientiarum. Technology, 41, e38986-e38986. 10.4025/actascitechnol.v41i1.38986

Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., Santos, R. A., Marques, N. S. A. A., Souza, A. F., Rodriguez, D. M., & Campos-Takaki, G. M. (2020). Production of biosurfactant and lipids by a novel strain of Absidia cylindrospora UCP 1301 isolated from Caatinga soil using low-cost agro-industrial by-products. Brazilian Journal of Development, 7(1), 8300-8313. 10.34117/bjdv7n1-564

Montero-Rodríguez, D., Andrade, R. F., Ribeiro, D. L. R., Rubio-Ribeaux, D., Lima, R. A., Araújo, H. W., & Campos-Takaki, G. M. (2015). Bioremediation of petroleum derivative using biosurfactant produced by Serratia marcescens UCP/WFCC 1549 in low-cost medium. Int. J. Curr. Microbiol. App. Sci, 4(7), 550-562.

Montero-Rodríguez, D., Andrade, R. F. S., Rubio-Ribeaux, D., Silva, T. A. L., Silva, G. K. B., Araújo, H. W. C., & Campos-Takaki, G. M. (2018). Suitability of wheat bran as promising substrate for coproduction of prodigiosin and biosurfactant by Serratia marcescens UCP/WFCC 1549,” In: Méndez-Vilas, A., [ed.]. Exploring Microorganisms: Recent Advances in Applied Microbiology Badajoz: BrownWalker Press, 149 -153.

Nalini, S., & Parthasarathi, R. (2014). Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresource Technology, 173, 231-238. 10.1016/j.biortech.2014.09.051

Nalini, S., & Parthasarathi, R. (2018). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 16(2), 108-115. 10.1016/j.aasci.2017.11.002

Pele, M. A., Montero-Rodriguez, D., Rubio-Ribeaux, D., Souza, A. F., Luna, M. A., Santiago, M. F., ... & Campos-Takaki, G. M. (2018). Development and improved selected markers to biosurfactant and bioemulsifier production by Rhizopus strains isolated from Caatinga soil. African Journal of Biotechnology, 17(6), 150-157. 10.5897/AJB2017.16230

Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K. S., Relph, L. E., & Armstrong, M. C. (2019). Biosurfactants and bioemulsifiers from marine algae. In The Role of Microalgae in Wastewater Treatment (pp. 169-188). Springer, Singapore. 10.1007/978-981-13-1586-2_13

Rubio-Ribeaux, D., De Oliveira, C. V. J., Marinho, J. D. S., Lins, U. D. B. L., Do Nascimento, I. D. F., Barreto, G. C., & Takaki, G. (2020). Innovative production of biosurfactant by Candida tropicalis UCP 1613 through solid-state fermentation. Chemical Engineering Transactions, 79, 361-366. 10.3303/CET2079061

Rulli, M. M., Alvarez, A., Fuentes, M. S., & Colin, V. L. (2019). Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids and Surfaces B: Biointerfaces, 174, 459-466. 10.1016/j.colsurfb.2018.11.052

Silva, A. C. S. D., Santos, P. N. D., Silva, T. A. L., Andrade, R. F. S., & Campos-Takaki, G. M. (2018). Biosurfactant production by fungi as a sustainable alternative. Arquivos do Instituto Biológico, 85. 10.1590/1808-1657000502017

Soccol, C. R., da Costa, E. S. F., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., & de Souza Vandenberghe, L. P. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52-71. 10.1016/j.biori.2017.01.002

Souza, A. F., Rodriguez, D. M., Ribeaux, D. R., Luna, M. A., Lima e Silva, T. A., Andrade, R. F. S., ... & Campos-Takaki, G. M. (2016). Waste soybean oil and corn steep liquor as economic substrates for bioemulsifier and biodiesel production by Candida lipolytica UCP 0998. International Journal of Molecular Sciences, 17(10), 1608. 10.3390/ijms17101608

Sperb, J. G. C., Costa, T. M., Bertoli, S. L., & Tavares, L. B. B. (2018). Simultaneous production of biosurfactants and lipases from Aspergillus niger and optimization by response surface methodology and desirability functions. Brazilian Journal of Chemical Engineering, 35, 857-868. 10.1590/0104-6632.20180353s20160400

Srivastava, N., Srivastava, M., Ramteke, P. W., & Mishra, P. K. (2019). Solid-state fermentation strategy for microbial metabolites production: An overview. In: New and future developments in Microbial Biotechnology and Bioengineering, Elsevier, 345-354. 10.1016/B978-0-444-63504-4.00023-2

Varjani, S. J., & Upasani, V. N. (2016). Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresource Technology, 221, 510-516. 10.1016/j.biortech.2016.09.080

Vecino, X., Cruz, J. M., Moldes, A. B., & Rodrigues, L. R. (2017). Biosurfactants in cosmetic formulations: trends and challenges. Critical Reviews in Biotechnology, 37(7), 911-923. 10.1080/07388551.2016.1269053

Velioglu, Z., & Urek, R. O. (2015). Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. Journal of Bioscience and Bioengineering, 120(5), 526-531. 10.1016/j.jbiosc.2015.03.007

Zhao, F., Han, S., & Zhang, Y. (2020). Comparative studies on the structural composition, surface/interface activity and application potential of rhamnolipids produced by Pseudomonas aeruginosa using hydrophobic or hydrophilic substrates. Bioresource Technology, 295, 122269. 10.1016/j.biortech.2019.122269

Downloads

Published

26/04/2022

How to Cite

RODRÍGUEZ, D. M. .; MENDONÇA, R. de S. .; SOUZA , A. F. de .; FERREIRA, I. N. da S. .; ANDRADE, R. F. da S. .; CAMPOS-TAKAKI, G. M. Solid-state fermentation for low-cost production of biosurfactant by promising Mucor hiemalis UCP 1309. Research, Society and Development, [S. l.], v. 11, n. 6, p. e25211628817, 2022. DOI: 10.33448/rsd-v11i6.28817. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28817. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings