Fermentação em estado sólido para produção de baixo custo de biossurfactante por Mucor hiemalis UCP 1309 promissor

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.28817

Palavras-chave:

Fungo Mucorales; Fermentação estática; Tensão superficial; Índice de emulsificação; Farelo de trigo.

Resumo

Biossurfactantes são moléculas anfipáticas com crescente interesse mundial devido à sua baixa toxicidade, alta biodegradabilidade e boa aceitação ecológica. São produzidos por micro-organismos e entre eles, fungos filamentosos pertencentes à ordem Mucorales têm sido relatados como produtores promissores. No entanto, a maioria desses estudos ainda utiliza a fermentação submersa tradicional, uma metodologia com problemas técnicos e econômicos. Neste contexto, este trabalho teve como objetivo a produção de biossurfactante por Mucor hiemalis UCP 1309 utilizando fermentação em estado sólido (FES) como tecnologia alternativa de baixo custo. Os experimentos foram realizados usando sete subprodutos e resíduos agroindustriais como substratos, suplementados com solução salina contendo 5% de óleo de soja residual. O meio com melhor resultado na produção de biossurfactante foi utilizado em uma segunda fermentação, onde foi realizado um planejamento fatorial completo 2² para investigar a influência do tamanho do inóculo e da concentração de óleo de soja residual na tensão superficial. Os resultados mostraram maior redução da tensão superficial (para 28,1 mN/m) na fermentação usando farelo de trigo. Além disso, a análise estatística demonstrou efeito significativo da concentração de óleo de soja residual na tensão superficial. O biossurfactante produzido demonstrou excelentes propriedades emulsificantes com óleo de soja residual, óleo de motor e óleo de motor queimado, e as emulsões permaneceram estáveis ​​após 90 dias de incubação. Portanto, este trabalho demonstrou que a FES é uma estratégia adequada para obter biossurfactante barato e eficiente e agilizar sua produção em larga escala. Além disso, relatamos pela primeira vez na literatura internacional a produção de biossurfactante usando FES por um fungo Mucorales.

Biografia do Autor

Dayana Montero Rodríguez, Catholic University of Pernambuco

Núcleo de Pesquisas em Ciˆncias Ambientais e  Biotecnologia- NPCIAMB

Rafael de Souza Mendonça, Catholic University of Pernambuco

Mestrado em Desenvolvimento de processos Ambientais

Adriana Ferreira de Souza , Catholic University of Pernambuco

Núcleo de Pesquisas em Ciências Ambientais e Biotecnologia-NPCIAMB

Isabela Natalia da Silva Ferreira, Catholic University of Pernambuco

Núcleo de Pesquisas em ciências Ambientais e Biotecnoloigia-NPCIAMB

Rosileide Fontenele da Silva Andrade, Catholic University of Pernambuco

Escola de saúde e de Ciências Biológicas

Referências

Andrade, R. F., Silva, T. A., Ribeaux, D. R., Rodriguez, D. M., Souza, A. F., Lima, M. A., & Campos-Takaki, G. M. (2018). Promising biosurfactant produced by Cunninghamella echinulata UCP 1299 using renewable resources and its application in cotton fabric cleaning process. Advances in Materials Science and Engineering, 2018. 10.1155/2018/1624573

Araújo, H. W., Andrade, R. F., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves da Silva, C. A., & Campos-Takaki, G. M. (2019). Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1-13. 10.1186/s12934-018-1046-0

Banat, I. M., Carboué, Q., Saucedo-Castañeda, G., & de Jesús Cázares-Marinero, J. (2021). Biosurfactants: the green generation of speciality chemicals and potential production using solid-state fermentation (SSF) technology. Bioresource Technology, 320, 124222. https://10.1016/j.biortech.2020.124222

Brumano, L. P., Antunes, F. A. F., Souto, S. G., Silva, G. M., Santos, J. C., & da Silva, S. S. (2018). Biosurfactant production by sugarcane bagasse as a renewable alternative for bioremediation process. In: Exploring Microorganisms: Recent Advances in Applied Microbiology, Brown Walker Press, 50.

Camilios-Neto, D., Bugay, C., de Santana-Filho, A. P., Joslin, T., de Souza, L. M., Sassaki, G. L., & Krieger, N. (2011). Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Applied microbiology and biotechnology, 89(5), 1395-1403. 10.1007/s00253-010-2987-3

Cândido, T. R. S., Mendonça, R. S., Lins, U. M. D. B. L., de Souza, A. F., Rodriguez, D. M., de Campos-Takaki, G. M., & da Silva Andrade, R. F. (2022). Production of biosurfactants by Mucoralean fungi isolated from Caatinga bioma soil using industrial waste as renewable substrates. Research, Society and Development, 11(2), e13411225332-e13411225332. 10.33448/rsd-v11i2.25332

Castiglioni, G. L., Stanescu, G., Rocha, L. A. O., & Costa, J. A. V. (2014). Analytical modeling and numerical optimization of the biosurfactants production in solid-state fermentation by Aspergillus fumigatus. Acta Scientiarum. Technology, 36(1), 61-67. 10.4025/actascitechnol.v36i1.17818

Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53(2), 224-229.

Costa, J. A., Treichel, H., Santos, L. O., & Martins, V. G. (2018). Solid-state fermentation for the production of biosurfactants and their applications. In Current developments in biotechnology and bioengineering (pp. 357-372). Elsevier. 10.1016/B978-0-444-63990-5.00016-5

dos Santos, R. A., Rodríguez, D. M., Ferreira, I. N. D. S., de Almeida, S. M., Takaki, G. M. D. C., & de Lima, M. A. B. (2021). Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environmental Technology, 1-12. 10.1080/09593330.2021.1910733

Ferreira, I. N. S., Rodríguez, D. M., Campos-Takaki, G. M., & da Silva Andrade, R. F. (2020). Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Electronic Journal of Biotechnology, 47, 51-58. 10.1016/j.ejbt.2020.06.006

Freitas, E. L., de Oliveira Lima, S., Montero-Rodríguez, D., da Silva Andrade, R. F., de Campos-Takaki, G. M., & de Araújo, H. W. C. (2022). Avaliação do fungo Penicillium sclerotiorum UCP 1040 na produção de biossurfactante utilizando óleo pós-fritura e milhocina. Research, Society and Development, 11(5), e0411527502-e0411527502. 10.33448/rsd-v11i5.27502

Krieger, N., Neto, D. C., & Mitchell, D. A. (2010). Production of microbial biosurfactants by solid-state cultivation. In: Biosurfactants Advances in Experimental Medicine and Biology, Springer, New York, NY, 672, 203-210.

Kuyukina, M. S., Ivshina, I. B., Philp, J. C., Christofi, N., Dunbar, S. A., & Ritchkova, M. I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods, 46(2), 149-156. 10.1016/S0167-7012(01)00259-7

Lima, R. A., Andrade, R. F., Rodríguez, D. M., Araujo, H. W., Santos, V. P., & Campos-Takaki, G. M. (2017). Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African Journal of Microbiology Research, 11(6), 237-244. 10.5897/AJMR2016.8341

Liu, W. J., Duan, X. D., Wu, L. P., & Masakorala, K. (2018). Biosurfactant production by Pseudomonas aeruginosa SNP0614 and its effect on biodegradation of petroleum. Applied Biochemistry and Microbiology, 54(2), 155-162. 10.1134/S0003683818020060

Lourenço, L. A., Alberton Magina, M. D., Tavares, L. B. B., Guelli Ulson de Souza, S. M. A., García Román, M., & Altmajer Vaz, D. (2018). Biosurfactant production by Trametes versicolor grown on two-phase olive mill waste in solid-state fermentation. Environmental Technology, 39(23), 3066-3076. 10.1080/09593330.2017.1374471

Marcelino, P. R. F., Gonçalves, F., Jimenez, I. M., Carneiro, B. C., Santos, B. B., & da Silva, S. S. (2020). Sustainable production of biosurfactants and their applications. Lignocellulosic Biorefining Technologies, 159-183. 10.1002/9781119568858.ch8

Marques, N. S. A. A., de Lima, T. A., da Silva Andrade, R. F., Júnior, J. F. B., Okada, K., & Takaki, G. M. C. (2019) Lipopeptide biosurfactant produced by Mucor circinelloides UCP/WFCC 0001 applied in the removal of crude oil and engine oil from soil. Acta Scientiarum. Technology, 41, e38986-e38986. 10.4025/actascitechnol.v41i1.38986

Mendonça, R. S., Sá, A. V. P., Rosendo, L. A., Santos, R. A., Marques, N. S. A. A., Souza, A. F., Rodriguez, D. M., & Campos-Takaki, G. M. (2020). Production of biosurfactant and lipids by a novel strain of Absidia cylindrospora UCP 1301 isolated from Caatinga soil using low-cost agro-industrial by-products. Brazilian Journal of Development, 7(1), 8300-8313. 10.34117/bjdv7n1-564

Montero-Rodríguez, D., Andrade, R. F., Ribeiro, D. L. R., Rubio-Ribeaux, D., Lima, R. A., Araújo, H. W., & Campos-Takaki, G. M. (2015). Bioremediation of petroleum derivative using biosurfactant produced by Serratia marcescens UCP/WFCC 1549 in low-cost medium. Int. J. Curr. Microbiol. App. Sci, 4(7), 550-562.

Montero-Rodríguez, D., Andrade, R. F. S., Rubio-Ribeaux, D., Silva, T. A. L., Silva, G. K. B., Araújo, H. W. C., & Campos-Takaki, G. M. (2018). Suitability of wheat bran as promising substrate for coproduction of prodigiosin and biosurfactant by Serratia marcescens UCP/WFCC 1549,” In: Méndez-Vilas, A., [ed.]. Exploring Microorganisms: Recent Advances in Applied Microbiology Badajoz: BrownWalker Press, 149 -153.

Nalini, S., & Parthasarathi, R. (2014). Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresource Technology, 173, 231-238. 10.1016/j.biortech.2014.09.051

Nalini, S., & Parthasarathi, R. (2018). Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Annals of Agrarian Science, 16(2), 108-115. 10.1016/j.aasci.2017.11.002

Pele, M. A., Montero-Rodriguez, D., Rubio-Ribeaux, D., Souza, A. F., Luna, M. A., Santiago, M. F., ... & Campos-Takaki, G. M. (2018). Development and improved selected markers to biosurfactant and bioemulsifier production by Rhizopus strains isolated from Caatinga soil. African Journal of Biotechnology, 17(6), 150-157. 10.5897/AJB2017.16230

Rahman, P. K., Mayat, A., Harvey, J. G. H., Randhawa, K. S., Relph, L. E., & Armstrong, M. C. (2019). Biosurfactants and bioemulsifiers from marine algae. In The Role of Microalgae in Wastewater Treatment (pp. 169-188). Springer, Singapore. 10.1007/978-981-13-1586-2_13

Rubio-Ribeaux, D., De Oliveira, C. V. J., Marinho, J. D. S., Lins, U. D. B. L., Do Nascimento, I. D. F., Barreto, G. C., & Takaki, G. (2020). Innovative production of biosurfactant by Candida tropicalis UCP 1613 through solid-state fermentation. Chemical Engineering Transactions, 79, 361-366. 10.3303/CET2079061

Rulli, M. M., Alvarez, A., Fuentes, M. S., & Colin, V. L. (2019). Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids and Surfaces B: Biointerfaces, 174, 459-466. 10.1016/j.colsurfb.2018.11.052

Silva, A. C. S. D., Santos, P. N. D., Silva, T. A. L., Andrade, R. F. S., & Campos-Takaki, G. M. (2018). Biosurfactant production by fungi as a sustainable alternative. Arquivos do Instituto Biológico, 85. 10.1590/1808-1657000502017

Soccol, C. R., da Costa, E. S. F., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L., & de Souza Vandenberghe, L. P. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52-71. 10.1016/j.biori.2017.01.002

Souza, A. F., Rodriguez, D. M., Ribeaux, D. R., Luna, M. A., Lima e Silva, T. A., Andrade, R. F. S., ... & Campos-Takaki, G. M. (2016). Waste soybean oil and corn steep liquor as economic substrates for bioemulsifier and biodiesel production by Candida lipolytica UCP 0998. International Journal of Molecular Sciences, 17(10), 1608. 10.3390/ijms17101608

Sperb, J. G. C., Costa, T. M., Bertoli, S. L., & Tavares, L. B. B. (2018). Simultaneous production of biosurfactants and lipases from Aspergillus niger and optimization by response surface methodology and desirability functions. Brazilian Journal of Chemical Engineering, 35, 857-868. 10.1590/0104-6632.20180353s20160400

Srivastava, N., Srivastava, M., Ramteke, P. W., & Mishra, P. K. (2019). Solid-state fermentation strategy for microbial metabolites production: An overview. In: New and future developments in Microbial Biotechnology and Bioengineering, Elsevier, 345-354. 10.1016/B978-0-444-63504-4.00023-2

Varjani, S. J., & Upasani, V. N. (2016). Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Bioresource Technology, 221, 510-516. 10.1016/j.biortech.2016.09.080

Vecino, X., Cruz, J. M., Moldes, A. B., & Rodrigues, L. R. (2017). Biosurfactants in cosmetic formulations: trends and challenges. Critical Reviews in Biotechnology, 37(7), 911-923. 10.1080/07388551.2016.1269053

Velioglu, Z., & Urek, R. O. (2015). Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation. Journal of Bioscience and Bioengineering, 120(5), 526-531. 10.1016/j.jbiosc.2015.03.007

Zhao, F., Han, S., & Zhang, Y. (2020). Comparative studies on the structural composition, surface/interface activity and application potential of rhamnolipids produced by Pseudomonas aeruginosa using hydrophobic or hydrophilic substrates. Bioresource Technology, 295, 122269. 10.1016/j.biortech.2019.122269

Downloads

Publicado

26/04/2022

Como Citar

RODRÍGUEZ, D. M. .; MENDONÇA, R. de S. .; SOUZA , A. F. de .; FERREIRA, I. N. da S. .; ANDRADE, R. F. da S. .; CAMPOS-TAKAKI, G. M. Fermentação em estado sólido para produção de baixo custo de biossurfactante por Mucor hiemalis UCP 1309 promissor. Research, Society and Development, [S. l.], v. 11, n. 6, p. e25211628817, 2022. DOI: 10.33448/rsd-v11i6.28817. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28817. Acesso em: 17 jul. 2024.

Edição

Seção

Engenharias