Effect of pH and temperature on phytase and biomass production by submerged fermentation with Aspergillus niger var. phoenicis URM 4924
DOI:
https://doi.org/10.33448/rsd-v11i6.28994Keywords:
Aspergillus niger; Ergosterol; Phytase; Submerged fermentation.Abstract
The production of phytase and biomass (estimated by the ergosterol content) by submerged fermentation with Aspergillus niger var. phoenicis URM 4924 was studied. Experimental assays were carried under different conditions of pH (4.0 to 8.0) and temperature (25 to 35 ºC), and the influence of these variables on the responses was studied through a 22 central composite design and response surface methodology. Phytase and biomass production were strongly affected by the pH and temperature used during fermentation. Phytase activity was increased in up to 7.8-fold (from 1.04 to 8.09 U/mL) and the ergosterol content was increased in up to 38-fold (from 9.3 to 354.09 µg/mL). The maximum values of both responses were achieved when using pH 4.0 and 30 ºC. Good correlation (second-order fit, R2 = 0.9875) was found between the data obtained for phytase activity and ergosterol content, suggesting that the phytase production depends on the biomass formation. These results are of interest since they contribute for the development of an industrial process for phytase production with elevated yields by submerged fermentation.
References
Alcazar-Fuoli, L., Mellado, E., Garcia-Effron, G., Lopez, J. F., Grimalt, J.O., Cuenca-Estrella, J. M., Rodriguez-Tudela, J. L. (2008). Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids, 73(3), 339-347.
Al-Refai A. H. (1964). Physiological and biochemical studies on the metabolism of fats and sterols in fungi. Ph D Thesis Fac of Science Cairo Univ Egypt.
Augustine, A., Joseph, I., & Raj, R.P. (2006). Biomass estimation of Aspergillus niger S14 a mangrove fungal isolate and A. oryzae NCIM 1212 in solid-state fermentation. J. Mar. Biol. Ass. India, 48(2), 139-146.
Axelsson, B. O., Saraf, A., & Larsson, L. (1995). Determination of ergosterol in organic dust by gas chromatographyemass spectrometry. Journal of Chromatography B, 666, 77-84.
Bellí, N., Marín, S., Sanchis, V., & Ramos, A. J. (2004). Influence of water activity and temperature on growth of isolates of Aspergillus section Nigri obtained from grapes. Int. J. Food Microbiol, 96(1), 19-27.
Bermingham, S., Maltby, L., & Cooke, R. C. (1995). A critical assessment of the validity of ergosterol as an indicator of fungal biomass. Mycol. Res, 99(4), 479- 484.
Bindler, G. N., Piade, J. J., & Schulthess, D. (1988). Evaluation of selected steroids as chemical markers of past or presently occurring fungal infection on tobacco. Beitr. Tabakforsch. Int, 14(2), 127-134.
Carvalho, J. C., Pandey, A., Oishi, B. O., Brand, D., Rodriguez-León, J. A., & Soccol, C. R. (2006). Relation between growth, respirometric analysis and biopigments production from monascus by solid-state fermentation. Biochemical Engineering Journal, 29, 262–269.
Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Protein Chem, 20(4), 287-292.
Desgranges, C., Vergoignan, C., Georges, M., & Durand, A. (1991). Biomass estimation in solid-state fermentation. I. Manual biochemical methods. Appl. Microbiol. Biotechnol, 35(2), 200-205.
Diarra, S. S., Usman, B. A., Igwebuike, J. U., & Yisa, A. G. (2010). Breeding for efficient phytate-phosphorus utilization by poultry. Int. J. Poult. Sci, 9(10), 923- 930.
Esmaeilipour, O., Van Krimpen, M. M., Jongbloed, A. W., de Jonge, L. H., & Bikker, P. (2012). Effects of temperature, pH, incubation time and pepsin concentration on the in vitro stability of intrinsic phytase of wheat, barley and rye. Anim. Feed Sci. Technol, 175(3-4), 168-174.
Evans, J. L. & Gealt, M. A. (1985). The sterols of growth and stationary phases of Aspergillus nidulans cultures. Journal of General Microbiology, 1: 131, 279.
Gargova, S. & Sariyska, M. (2003). Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase. Enzyme Microb. Technol, 32(2), 231-235.
Gessner, M. O. & Chauvet, E., (1997a). Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol. Oceanogr, 42(3), 496-505.
Gessner, M. O. & Chauvet, E. (1997b). Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied Environmental Microbiology, 59:502– 507.
Ghanemi, K. M., Ghanemi, N. B. A., El-Refai, H., & Michalin, A. N. (1990). Utilization of beet molasse for sterol production by some moulds. Microbiología, 6, 37-44.
Gougouli, M. & Koutsoumanis, K. P. (2010). Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions. Int. J. Food Microbiol, 140(2-3), 254-262.
Gourama, H. & Bullerman, L. B. (1995a). Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A review. J. Food Prot, 58(12), 1395-1404.
Gourama, H. & Bullerman, L. B. (1995b). Relationship between aflatoxin production and mold growth as measured by ergosterol and plate count. LWT – Food Sci. Technol, 28(2), 185-189.
Haefner, S., Knietsch, A., Scholten, E., Braun, J.; Lohscheidt, M.; & Zelder, O. (2005). Biotechnological Production and Applications of Phytases. Appl. Microbiol. Biotechnol, 68(5), 588-597.
Han, Y. W., Gallagher, D. J., & Wilfred, A. G. (1987). Phytase production by Aspergillus ficuum on semisolid substrate. J. Ind. Microbiol, 2(4), 195-200.
Heinonen, J. K. & Lathi, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem, 113(2), 313-317.
Khan, A. D., Ahmad, R., Salman, S., Shahzad, K., & Khaliq, A. (2004). Biosynthesis of fungal phytase from defatted rice polish. Pak. J. Food Sci, 14(1-2), 61-64.
Krishna, C. & Nokes, S. E. (2001). Influence of inoculum size on phytase production and growth in solid-state fermentation by Aspergillus niger. Trans. ASABE, 44(4), 1031-1036.
Leong, S.-L. L., Hocking, A. D., & Scott, E. S. (2006). Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. Int. J. Food Microbiol, 110(3), 209-216.
Luo, H.-Y., Huang, H.-Q., Bai, Y.-G., Wang, Y.-R., Yang, P.-L., Meng, K., Yuan, T.-Z., & Yao, B. (2006). Improving phytase expression by increasing the gene copy number of appA-m in Pichia pastoris. Chin. J. Biotechnol, 22(4), 528-533.
Marín, S., Ramos, A. J., & Sanchis, V. (2005). Comparison of methods for the assessment of growth of food spoilage moulds in solid substrates. Int. J. Food Microbiol, 99(3), 329-341.
Marín, S., Sanchis, V., Sáenz, R., Ramos, A.J., Vinas, I., & Magan, N. (1998). Ecological determinants for germination and growth of some Aspergillus and
Penicillium spp. from maize grain. J. Appl. Microbiol, 84(1), 25-36.
Marlida, Y., Delfita, R., Adnadi, P., & Ciptaan, G. (2010). Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak. J. Nutr, 9(5), 471-474.
Mullaney, E. J., Daly, C. B., & Ullah, A. H. J. (2000). Advances in phytase research. Adv. Appl. Microbiol, 47, 157-199.
Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2012). Use of agro-industrial wastes in solid-state fermentation processes, in: Show, K.-Y., Guo,
X. (Eds.), Industrial Waste. InTech - Open Access Publisher, Rijeka, Croatia, pp 121-140.
Naim, N., Saad, R., & Naim, M. S. (1985). Production of lipids and sterols by Fusarium oxysporum (Schlecht). Utilization of some agro-industrial by-products as additives and basal medium. Agricultural Wastes, 14:207.
Newell, S. Y. (1992). Estimating fungal biomass and productivity in decomposing litter, p. 521–561. In G. C. Carroll and D. T. Wicklow (ed.).
Newell, S. Y. (1996). The (14C) acetate-to-ergosterol method: Factors for conversion from acetate incorporated to organic fungal mass synthesized. Soil. Biol. Biochem, 28(4/5), 681–683.
Ng, H. E., Raj, S. S., Wong, S. H., Tey, D., & Tan, H.M. (2008). Estimativa de crescimento dos fungos utilizando o ensaio de ergosterol: uma ferramenta rápida em avaliar o estado microbiológico dos grãos e rações. Letters Applid Microbiology, 46(1) :113-118.
Nout, M. J. R., Bonants-van Laarhoven, T. M. G., de Jongh, P., & Koster, P. G. (1987). Ergosterol content of Rhizopus oligosporus NRRL 5905 grown in liquid and solid substrates, Applied Microbiology and Biotechnology, 26:456-461.
Olsson, J., Börjesson, T., Lundstedt, T., & Schnürer, J. (2002). Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC–MS and electronic nose. Int. J. Food Microbiol, 72(3), 203-214.
Ooijkaas, L. P., Tramper, J., & Buitelaar, R. M. (1998). Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme Microb. Technol, 22(6), 480-486.
Osman, H. G., Mostafa, M. A., & El-Refai, A. H. (1969). Production of lipid and sterol by Aspergillus fumigatus. I. Culture conditions favouring the formation of lipids and sterols. Journal of Chemistry of the UAR, 12(2):185.
Pandey, A., Szakacs, G., Soccol, C.R., Rodriguez-Leon, J.A., Soccol, V.T. (2001). Production, purification and properties of microbial phytases. Bioresource Technol, 77(3), 203-214.
Parra, R. & Magan, N. (2004). Modelling the effect of temperature and water activity on growth of Aspergillus niger strains and applications for food spoilage moulds. J. Appl. Microbiol, 97(2), 429-438.
Pasanen, A., Yli-Pietila, K., Pasanen, P., Pentti, K., & Tarhanen, J. (1999). Ergosterol content in various fungal species and biocontaminated building materials fungal community, 2nd ed. Marcel Dekker, Inc., New York, N.Y. Applied and Environmental Microbiology, p. 138–142.
Pitt, J. I. & Hocking, A. D. (1997). Aspergillus and related teleomorphs, in: Pitt, J.I., Hocking, A.D. (Eds.) Fungi and Food Spoilage. Blackie Academic and Professional, London, United Kingdom, pp, 339–416.
Reeslev, M. & Kjoller, A. (1995). Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Applied and Environmental Microbiology, 61, 4236– 4239.
Reeslev, M., Miller, M., & Nielsen, K.F. (2003). Quantifying mold biomass on gypsum board: comparison of ergosterol and beta- N-acetylhexosaminidase as mold biomass parameters. Applied and Environmental Microbiology, 69, 3996– 3998.
Ruppol, E. (1949). Some constituents of Penicillium notatum. Journal de Pharmacie de Belgique, (U.S) 4:59.
Saxena, J., Munimbazi, C., & Bullerman, L. B. (2001). Relationship of mould count, ergosterol and ochratoxin A production. Int. J. Food Microbiol, 71(1), 29-34.
Schwadorf, K. & Muller, H. M. (1989). Determination of ergosterol in cereals, mixed feed components, and mixed feeds by liquid chromatography. J. AOAC Int, 72(3), 457-462.
Schnürer, J. (1993). Comparison of methods for estimating the biomass of three food-borne fungi with different growth patterns. Applied Environmental Microbiology, 59:552-555.
Shah, P., Bhavsar, K., Soni, S. K., & Khire, M. J. (2009). Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. J. Ind. Microbiol. Biotechnol, 36(3), 373-380.
Shapiro, B. E. & Geatl, M. A. (1982). Ergosterol and lanosterol from Aspergillus nidulans. Journal of General Microbiology, 128:1053.
Soni, S. K. & Khire, J. M. (2007). Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J. Microbiol. Biotechnol, 23(11), 1585-1593.
Spier, M. R., Fendrich, R. C., Almeida, Noseda, M., Greiner, R., Konietzny, U., Woiciechowski, A. L., Soccol,, C. R. (2011). Phytase produced on citric byproducts: purification and characterization. World J. Microbiol. Biotechnol, 27(2), 267-274.
Spier, M. R., Scheidt, G. N., Portella, A. C., Rodríguez-León, J. A., Woiciechowski, A. L., & Greiner, R. C. (2010). Incease in phytase synthesis during citric pulp fermentation. Chemical Engineering Communications, 198 (2).
Spier, M. R., Letti, L. A. J., Woiciechowski, A. L., & Soccol, C. R. (2009). A simplified model for A. niger FS3 growth during phytase formation in solid state fermentation. Braz. Arch. Biol. Technol, 52, 151-158.
Taniwaki, M. H., Pitt, J. I., Hocking, A. D., & Fleet, G. H. (2006). Comparison of hyphal length, ergosterol, mycelium dry weight, and colony diameter for quantifying growth of fungi from foods. Adv. Exp. Med. Biol, 571, 49-67.
Torres, M., Viladrich, R., Sanchis, V., & Canela, R. (1992). Influence of age on ergosterol content in mycelium of Aspergillus ochraceus. Lett. Appl. Microbiol, 15(1), 20-22.
Vacheron, M. J. & Michel, G. (1968). Composition en sterols et en acides gras de deux souches d’Aspergillus flavus, Phytochemistry, 7:1645-1651.
Vats, P. & Banerjee, U. C. (2002). Studies on the production of phytase by a newly isolated strain of Aspergillus niger var teigham obtained from rotten wood- logs. Process. Biochem, 38(2), 211-217.
Vats, P. & Banerjee, U. C. (2004). Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzyme Microb. Technol, 35(1), 3-14.
Vohra, A. & Satyanarayana, T. (2003). Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol, 23(1), 29-60.
Weete, J. D. (1973). Sterols of fungi: distribution and biosynthesis, Phytochemistry, 12:1843-1864.
White, P. & Johnson, L. A. (2003). Corn: Chemistry and Technology, (2a ed.), American Association of Cereal Chemists, USA.
Zhang, G.Q., Dong, X. F., Wang, Z. H., Zhang, Q., Wang, H. X., & Tong, J. M. (2010). Purification, characterization, and cloning of a novel phytase with low ph optimum and strong proteolysis resistance from aspergillus ficuum ntg-23. Bioresource Technol, 101(11), 4125-4131.
Zheng, W. F., Liu, T., Xiang, X. Y., & Gu, Q. (2007). Sterol composition in field-grown and culture mycelia of Inonotus obliquus. Acta Pharm. Sin, 42(7), 750- 756.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Júlio Cézar dos Santos Nascimento; Apolônio Gomes Ribeiro; Ricardo Alexandre Silva Pessoa; Carlos Bôa Viagem Rabello; Armando Venâncio; Tatiana Souza Porto; José António Couto Teixeira; Ana Lúcia Figueiredo Porto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.