Efeito do pH e da temperatura na produção e biomassa de fitase por fermentação submersa com Aspergillus niger var. phoenicis URM 4924

Autores

DOI:

https://doi.org/10.33448/rsd-v11i6.28994

Palavras-chave:

Aspergillus niger; Ergosterol; Fitase; Fermentação submersa.

Resumo

A produção de fitase e biomassa (estimada pelo teor de ergosterol) por fermentação submersa com Aspergillus niger var. phoenicis URM 4924 foi estudada. Ensaios experimentais foram realizados sob diferentes condições de pH (4,0 a 8,0) e temperatura (25 a 35 ºC), e a influência dessas variáveis nas respostas foi estudada por meio de um planejamento estatístico composto e metodologia de superfície de resposta. A produção de fitase e biomassa foi afetada pelo pH e temperatura utilizados durante a fermentação. A atividade da fitase aumentou em até 7,8 vezes (de 1,04 a 8,09 U/mL) e a concentração de ergosterol foi aumentada em até 38 vezes (de 9,3 a 354,09 µg/mL). Os valores máximos de ambas as respostas foram alcançados com pH 4,0 e 30 ºC. Boa correlação (ajuste de segunda ordem, R2 = 0,9875) foi encontrada entre os dados obtidos para atividade de fitase e teor de ergosterol, sugerindo que a produção de fitase é depende da formação de biomassa. Esses resultados são interessantes, pois contribuem para o desenvolvimento de um processo industrial de produção de fitase com elevados rendimentos por fermentação submersa.

Referências

Alcazar-Fuoli, L., Mellado, E., Garcia-Effron, G., Lopez, J. F., Grimalt, J.O., Cuenca-Estrella, J. M., Rodriguez-Tudela, J. L. (2008). Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids, 73(3), 339-347.

Al-Refai A. H. (1964). Physiological and biochemical studies on the metabolism of fats and sterols in fungi. Ph D Thesis Fac of Science Cairo Univ Egypt.

Augustine, A., Joseph, I., & Raj, R.P. (2006). Biomass estimation of Aspergillus niger S14 a mangrove fungal isolate and A. oryzae NCIM 1212 in solid-state fermentation. J. Mar. Biol. Ass. India, 48(2), 139-146.

Axelsson, B. O., Saraf, A., & Larsson, L. (1995). Determination of ergosterol in organic dust by gas chromatographyemass spectrometry. Journal of Chromatography B, 666, 77-84.

Bellí, N., Marín, S., Sanchis, V., & Ramos, A. J. (2004). Influence of water activity and temperature on growth of isolates of Aspergillus section Nigri obtained from grapes. Int. J. Food Microbiol, 96(1), 19-27.

Bermingham, S., Maltby, L., & Cooke, R. C. (1995). A critical assessment of the validity of ergosterol as an indicator of fungal biomass. Mycol. Res, 99(4), 479- 484.

Bindler, G. N., Piade, J. J., & Schulthess, D. (1988). Evaluation of selected steroids as chemical markers of past or presently occurring fungal infection on tobacco. Beitr. Tabakforsch. Int, 14(2), 127-134.

Carvalho, J. C., Pandey, A., Oishi, B. O., Brand, D., Rodriguez-León, J. A., & Soccol, C. R. (2006). Relation between growth, respirometric analysis and biopigments production from monascus by solid-state fermentation. Biochemical Engineering Journal, 29, 262–269.

Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Protein Chem, 20(4), 287-292.

Desgranges, C., Vergoignan, C., Georges, M., & Durand, A. (1991). Biomass estimation in solid-state fermentation. I. Manual biochemical methods. Appl. Microbiol. Biotechnol, 35(2), 200-205.

Diarra, S. S., Usman, B. A., Igwebuike, J. U., & Yisa, A. G. (2010). Breeding for efficient phytate-phosphorus utilization by poultry. Int. J. Poult. Sci, 9(10), 923- 930.

Esmaeilipour, O., Van Krimpen, M. M., Jongbloed, A. W., de Jonge, L. H., & Bikker, P. (2012). Effects of temperature, pH, incubation time and pepsin concentration on the in vitro stability of intrinsic phytase of wheat, barley and rye. Anim. Feed Sci. Technol, 175(3-4), 168-174.

Evans, J. L. & Gealt, M. A. (1985). The sterols of growth and stationary phases of Aspergillus nidulans cultures. Journal of General Microbiology, 1: 131, 279.

Gargova, S. & Sariyska, M. (2003). Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase. Enzyme Microb. Technol, 32(2), 231-235.

Gessner, M. O. & Chauvet, E., (1997a). Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol. Oceanogr, 42(3), 496-505.

Gessner, M. O. & Chauvet, E. (1997b). Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied Environmental Microbiology, 59:502– 507.

Ghanemi, K. M., Ghanemi, N. B. A., El-Refai, H., & Michalin, A. N. (1990). Utilization of beet molasse for sterol production by some moulds. Microbiología, 6, 37-44.

Gougouli, M. & Koutsoumanis, K. P. (2010). Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions. Int. J. Food Microbiol, 140(2-3), 254-262.

Gourama, H. & Bullerman, L. B. (1995a). Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A review. J. Food Prot, 58(12), 1395-1404.

Gourama, H. & Bullerman, L. B. (1995b). Relationship between aflatoxin production and mold growth as measured by ergosterol and plate count. LWT – Food Sci. Technol, 28(2), 185-189.

Haefner, S., Knietsch, A., Scholten, E., Braun, J.; Lohscheidt, M.; & Zelder, O. (2005). Biotechnological Production and Applications of Phytases. Appl. Microbiol. Biotechnol, 68(5), 588-597.

Han, Y. W., Gallagher, D. J., & Wilfred, A. G. (1987). Phytase production by Aspergillus ficuum on semisolid substrate. J. Ind. Microbiol, 2(4), 195-200.

Heinonen, J. K. & Lathi, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem, 113(2), 313-317.

Khan, A. D., Ahmad, R., Salman, S., Shahzad, K., & Khaliq, A. (2004). Biosynthesis of fungal phytase from defatted rice polish. Pak. J. Food Sci, 14(1-2), 61-64.

Krishna, C. & Nokes, S. E. (2001). Influence of inoculum size on phytase production and growth in solid-state fermentation by Aspergillus niger. Trans. ASABE, 44(4), 1031-1036.

Leong, S.-L. L., Hocking, A. D., & Scott, E. S. (2006). Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. Int. J. Food Microbiol, 110(3), 209-216.

Luo, H.-Y., Huang, H.-Q., Bai, Y.-G., Wang, Y.-R., Yang, P.-L., Meng, K., Yuan, T.-Z., & Yao, B. (2006). Improving phytase expression by increasing the gene copy number of appA-m in Pichia pastoris. Chin. J. Biotechnol, 22(4), 528-533.

Marín, S., Ramos, A. J., & Sanchis, V. (2005). Comparison of methods for the assessment of growth of food spoilage moulds in solid substrates. Int. J. Food Microbiol, 99(3), 329-341.

Marín, S., Sanchis, V., Sáenz, R., Ramos, A.J., Vinas, I., & Magan, N. (1998). Ecological determinants for germination and growth of some Aspergillus and

Penicillium spp. from maize grain. J. Appl. Microbiol, 84(1), 25-36.

Marlida, Y., Delfita, R., Adnadi, P., & Ciptaan, G. (2010). Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak. J. Nutr, 9(5), 471-474.

Mullaney, E. J., Daly, C. B., & Ullah, A. H. J. (2000). Advances in phytase research. Adv. Appl. Microbiol, 47, 157-199.

Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2012). Use of agro-industrial wastes in solid-state fermentation processes, in: Show, K.-Y., Guo,

X. (Eds.), Industrial Waste. InTech - Open Access Publisher, Rijeka, Croatia, pp 121-140.

Naim, N., Saad, R., & Naim, M. S. (1985). Production of lipids and sterols by Fusarium oxysporum (Schlecht). Utilization of some agro-industrial by-products as additives and basal medium. Agricultural Wastes, 14:207.

Newell, S. Y. (1992). Estimating fungal biomass and productivity in decomposing litter, p. 521–561. In G. C. Carroll and D. T. Wicklow (ed.).

Newell, S. Y. (1996). The (14C) acetate-to-ergosterol method: Factors for conversion from acetate incorporated to organic fungal mass synthesized. Soil. Biol. Biochem, 28(4/5), 681–683.

Ng, H. E., Raj, S. S., Wong, S. H., Tey, D., & Tan, H.M. (2008). Estimativa de crescimento dos fungos utilizando o ensaio de ergosterol: uma ferramenta rápida em avaliar o estado microbiológico dos grãos e rações. Letters Applid Microbiology, 46(1) :113-118.

Nout, M. J. R., Bonants-van Laarhoven, T. M. G., de Jongh, P., & Koster, P. G. (1987). Ergosterol content of Rhizopus oligosporus NRRL 5905 grown in liquid and solid substrates, Applied Microbiology and Biotechnology, 26:456-461.

Olsson, J., Börjesson, T., Lundstedt, T., & Schnürer, J. (2002). Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC–MS and electronic nose. Int. J. Food Microbiol, 72(3), 203-214.

Ooijkaas, L. P., Tramper, J., & Buitelaar, R. M. (1998). Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme Microb. Technol, 22(6), 480-486.

Osman, H. G., Mostafa, M. A., & El-Refai, A. H. (1969). Production of lipid and sterol by Aspergillus fumigatus. I. Culture conditions favouring the formation of lipids and sterols. Journal of Chemistry of the UAR, 12(2):185.

Pandey, A., Szakacs, G., Soccol, C.R., Rodriguez-Leon, J.A., Soccol, V.T. (2001). Production, purification and properties of microbial phytases. Bioresource Technol, 77(3), 203-214.

Parra, R. & Magan, N. (2004). Modelling the effect of temperature and water activity on growth of Aspergillus niger strains and applications for food spoilage moulds. J. Appl. Microbiol, 97(2), 429-438.

Pasanen, A., Yli-Pietila, K., Pasanen, P., Pentti, K., & Tarhanen, J. (1999). Ergosterol content in various fungal species and biocontaminated building materials fungal community, 2nd ed. Marcel Dekker, Inc., New York, N.Y. Applied and Environmental Microbiology, p. 138–142.

Pitt, J. I. & Hocking, A. D. (1997). Aspergillus and related teleomorphs, in: Pitt, J.I., Hocking, A.D. (Eds.) Fungi and Food Spoilage. Blackie Academic and Professional, London, United Kingdom, pp, 339–416.

Reeslev, M. & Kjoller, A. (1995). Comparison of biomass dry weights and radial growth rates of fungal colonies on media solidified with different gelling compounds. Applied and Environmental Microbiology, 61, 4236– 4239.

Reeslev, M., Miller, M., & Nielsen, K.F. (2003). Quantifying mold biomass on gypsum board: comparison of ergosterol and beta- N-acetylhexosaminidase as mold biomass parameters. Applied and Environmental Microbiology, 69, 3996– 3998.

Ruppol, E. (1949). Some constituents of Penicillium notatum. Journal de Pharmacie de Belgique, (U.S) 4:59.

Saxena, J., Munimbazi, C., & Bullerman, L. B. (2001). Relationship of mould count, ergosterol and ochratoxin A production. Int. J. Food Microbiol, 71(1), 29-34.

Schwadorf, K. & Muller, H. M. (1989). Determination of ergosterol in cereals, mixed feed components, and mixed feeds by liquid chromatography. J. AOAC Int, 72(3), 457-462.

Schnürer, J. (1993). Comparison of methods for estimating the biomass of three food-borne fungi with different growth patterns. Applied Environmental Microbiology, 59:552-555.

Shah, P., Bhavsar, K., Soni, S. K., & Khire, M. J. (2009). Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. J. Ind. Microbiol. Biotechnol, 36(3), 373-380.

Shapiro, B. E. & Geatl, M. A. (1982). Ergosterol and lanosterol from Aspergillus nidulans. Journal of General Microbiology, 128:1053.

Soni, S. K. & Khire, J. M. (2007). Production and partial characterization of two types of phytase from Aspergillus niger NCIM 563 under submerged fermentation conditions. World J. Microbiol. Biotechnol, 23(11), 1585-1593.

Spier, M. R., Fendrich, R. C., Almeida, Noseda, M., Greiner, R., Konietzny, U., Woiciechowski, A. L., Soccol,, C. R. (2011). Phytase produced on citric byproducts: purification and characterization. World J. Microbiol. Biotechnol, 27(2), 267-274.

Spier, M. R., Scheidt, G. N., Portella, A. C., Rodríguez-León, J. A., Woiciechowski, A. L., & Greiner, R. C. (2010). Incease in phytase synthesis during citric pulp fermentation. Chemical Engineering Communications, 198 (2).

Spier, M. R., Letti, L. A. J., Woiciechowski, A. L., & Soccol, C. R. (2009). A simplified model for A. niger FS3 growth during phytase formation in solid state fermentation. Braz. Arch. Biol. Technol, 52, 151-158.

Taniwaki, M. H., Pitt, J. I., Hocking, A. D., & Fleet, G. H. (2006). Comparison of hyphal length, ergosterol, mycelium dry weight, and colony diameter for quantifying growth of fungi from foods. Adv. Exp. Med. Biol, 571, 49-67.

Torres, M., Viladrich, R., Sanchis, V., & Canela, R. (1992). Influence of age on ergosterol content in mycelium of Aspergillus ochraceus. Lett. Appl. Microbiol, 15(1), 20-22.

Vacheron, M. J. & Michel, G. (1968). Composition en sterols et en acides gras de deux souches d’Aspergillus flavus, Phytochemistry, 7:1645-1651.

Vats, P. & Banerjee, U. C. (2002). Studies on the production of phytase by a newly isolated strain of Aspergillus niger var teigham obtained from rotten wood- logs. Process. Biochem, 38(2), 211-217.

Vats, P. & Banerjee, U. C. (2004). Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzyme Microb. Technol, 35(1), 3-14.

Vohra, A. & Satyanarayana, T. (2003). Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol, 23(1), 29-60.

Weete, J. D. (1973). Sterols of fungi: distribution and biosynthesis, Phytochemistry, 12:1843-1864.

White, P. & Johnson, L. A. (2003). Corn: Chemistry and Technology, (2a ed.), American Association of Cereal Chemists, USA.

Zhang, G.Q., Dong, X. F., Wang, Z. H., Zhang, Q., Wang, H. X., & Tong, J. M. (2010). Purification, characterization, and cloning of a novel phytase with low ph optimum and strong proteolysis resistance from aspergillus ficuum ntg-23. Bioresource Technol, 101(11), 4125-4131.

Zheng, W. F., Liu, T., Xiang, X. Y., & Gu, Q. (2007). Sterol composition in field-grown and culture mycelia of Inonotus obliquus. Acta Pharm. Sin, 42(7), 750- 756.

Downloads

Publicado

13/05/2022

Como Citar

NASCIMENTO, J. C. dos S.; RIBEIRO, A. G. .; PESSOA, R. A. S. .; RABELLO, C. B. V. .; VENÂNCIO, A. .; PORTO, T. S. .; TEIXEIRA, J. A. C. .; PORTO, A. L. F. . Efeito do pH e da temperatura na produção e biomassa de fitase por fermentação submersa com Aspergillus niger var. phoenicis URM 4924. Research, Society and Development, [S. l.], v. 11, n. 6, p. e41311628994, 2022. DOI: 10.33448/rsd-v11i6.28994. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28994. Acesso em: 30 jun. 2024.

Edição

Seção

Ciências Agrárias e Biológicas