Biomechanical evaluation of partial prosthesis on implants with different platforms in the posterior region of mandible: in silicon analysis
DOI:
https://doi.org/10.33448/rsd-v11i6.29037Keywords:
Dental implants; Finite element analysis; Prosthodontics.Abstract
This study evaluated the behavior of implants with different cervical geometries in a three-element prosthesis in the posterior region of the mandible using the finite element method. For this, four models were created in SolidWorks Professional 2013® software, in the format of a bone block, simulating the rehabilitation of three elements in zirconia-based ceramic, supported by two implants in the regions of elements 44 and 46. The variables were diferent cervical geometries (bone level – NO – or gingival level – NG) Arranged: M1 – two NO implants; M2 – two NG implants; M3 – implant of element 44 in NO and element 46 in NG, and; M4 – implant element 44 in NG and element 46 in NO. The models were exported to Ansys Workbench 14.0® software. For occlusal loading, 300 N on the first molar and 150 N on the premolars. The M4 model presented lower compressive stress in cortical bone (49.55 MPa), while for medullary bone; the M2 model presented lower compressive stress (3.89 MPa). In implants in the premolar and molar region, models M3 and M1 showed lower von Mises stress peaks, with 67.78 MPa and 97.91 MPa, respectively. The M4 model showed the lowest von Mises stresses for the abutment in the premolar region (66.61 MPa), while the M3 model showed the lowest abutment stress in the molar region (113.63 MPa). It was concluded that there is an influence of the cervical geometry of the implants on the stress distribution and that NO implants had higher stress peaks than NG implants.
References
Adell, R. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery, 10(6), 387–416. https://doi.org/10.1016/S0300-9785(81)80077-4
Adell, R., Eriksson, B., Lekholm, U., Brånemark, P., & Jemt, T. (2002). A Long-Term Follow-up Study of Osseointegrated Implants in the Treatment of Totally Edentulous Jaws. Clinical Oral Implants Research, 13(3), 260–273. https://doi.org/10.1034/j.1600-0501.2002.130305.x
Agustín-Panadero, R., Bermúdez-Mulet, I., Fernández-Estevan, L., Solá-Ruíz, M. F., Marco-Pitarch, R., Selva-García, M., Zubizarreta-Macho, Á., & León-Martínez, R. (2021). Peri-implant behavior of tissue level dental implants with a convergent neck. International Journal of Environmental Research and Public Health, 18(10). https://doi.org/10.3390/ijerph18105232
Becker, W., & Becker, B. E. (1995). Replacement of maxillary and mandibular molars with single endosseous implant restorations: A retrospective study. The Journal of Prosthetic Dentistry, 74(1), 51–55. https://doi.org/10.1016/S0022-3913(05)80229-X
Borges Radaelli, M. T., Idogava, H. T., Spazzin, A. O., Noritomi, P. Y., & Boscato, N. (2018). Parafunctional loading and occlusal device on stress distribution around implants: A 3D finite element analysis. Journal of Prosthetic Dentistry, 120(4), 565–572. https://doi.org/10.1016/j.prosdent.2017.12.023
Carvalho, R. S. De, Eduardo, C., & Jr, F. (1960). Classificação de Francischone para próteses sobre implantes Carlos Eduardo Francischone.
Chiapasco, M., Casentini, P., & Zaniboni, M. (2014). Implants in Reconstructed Bone: A Comparative Study on the Outcome of Straumann® Tissue Level and Bone Level Implants Placed in Vertically Deficient Alveolar Ridges Treated by Means of Autogenous Onlay Bone Grafts. Clinical Implant Dentistry and Related Research, 16(1), 32–50. https://doi.org/10.1111/j.1708-8208.2012.00457.x
Choi, S. M., Choi, H., Lee, D. H., & Hong, M. H. (2021). Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis. Journal of Advanced Prosthodontics, 13(6), 396–407. https://doi.org/10.4047/jap.2021.13.6.396
Coray, R., Zeltner, M., & Özcan, M. (2016). Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 62, 333–346. https://doi.org/10.1016/j.jmbbm.2016.05.011
Donovan, R., Fetner, A., Koutouzis, T., & Lundgren, T. (2010). Crestal Bone Changes Around Implants With Reduced Abutment Diameter Placed Non-Submerged and at Subcrestal Positions: A 1-Year Radiographic Evaluation. Journal of Periodontology, 81(3), 428–434. https://doi.org/10.1902/jop.2009.090317
Elsayyad, A. A., Abbas, N. A., AbdelNabi, N. M., & Osman, R. B. (2020). Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: A 3D finite element analysis study. Journal of Prosthetic Dentistry, 124(1), 68.e1-68.e10. https://doi.org/10.1016/j.prosdent.2020.01.015
Eser, A., Tonuk, E., Akca, K., Dard, M. M., & Cehreli, M. C. (2013). Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. Journal of Biomechanics, 46(13), 2250–2257. https://doi.org/10.1016/j.jbiomech.2013.06.025
Eskitascioglu, G., Usumez, A., Sevimay, M., Soykan, E., & Unsal, E. (2004). The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. Journal of Prosthodontics, 91(2), 144–150. https://doi.org/doi:10.1016/j.prosdent.2003.10.018
Filius, M. A. P., Vissink, A., Cune, M. S., Raghoebar, G. M., & Visser, A. (2018). Effect of implant therapy on oral health-related quality of life (OHIP-49), health status (SF-36), and satisfaction of patients with several agenetic teeth: Prospective cohort study. Clinical Implant Dentistry and Related Research, 20(4), 592–597. https://doi.org/10.1111/cid.12625
Geng, J.-P., Tan, K. B. C., & Gui-Rong Liu. (2001). Application of finite element analysis in implant dentistry: A review of the literature. The Journal of Prosthetic Dentistry, 85(June), 585–598. http://www.sciencedirect.com/science/article/pii/s0022-3913(01)57431-4
Guirado, J. L. C., Yuguero, M. R. S., Zamora, G. P., & Barrio, E. M. (2007). Immediate provisionalization on a new implant design for esthetic restoration and preserving crestal bone. Implant Dentistry, 16(2), 155–164. https://doi.org/10.1097/ID.0b013e31805816c9
Hadzik, J., Botzenhart, U., Krawiec, M., Gedrange, T., Heinemann, F., Vegh, A., & Dominiak, M. (2017). Comparative evaluation of the effectiveness of the implantation in the lateral part of the mandible between short tissue level (TE) and bone level (BL) implant systems. Annals of Anatomy, 213, 78–82. https://doi.org/10.1016/j.aanat.2017.05.008
Hagiwara, Y. (2010). Does platform switching really prevent crestal bone loss around implants? Japanese Dental Science Review, 46(2), 122–131. https://doi.org/10.1016/j.jdsr.2009.11.003
Hämmerle, C. H. F., Cordaro, L., Alccayhuaman, K. A. A., Botticelli, D., Esposito, M., Colomina, L. E., Gil, A., Gulje, F. L., Ioannidis, A., Meijer, H., Papageorgiou, S., Raghoebar, G., Romeo, E., Renouard, F., Storelli, S., Torsello, F., & Wachtel, H. (2018). Biomechanical aspects: Summary and consensus statements of group 4. The 5 th EAO Consensus Conference 2018. Clinical Oral Implants Research, 29(May), 326–331. https://doi.org/10.1111/clr.13284
Jones, A. A., & Cochran, D. L. (2006). Consequences of Implant Design. Dental Clinics of North America, 50(3), 339–360. https://doi.org/10.1016/j.cden.2006.03.008
Khraisat, A., Stegaroiu, R., Nomura, S., & Miyakawa, O. (2002). Fatigue resistance of two implant/abutment joint designs. Journal of Prosthetic Dentistry, 88(6), 604–610. https://doi.org/10.1067/mpr.2002.129384
Kumar, V. V., Sagheb, K., Kämmerer, P. W., Al-Nawas, B., & Wagner, W. (2014). Retrospective Clinical Study of Marginal Bone Level Changes with Two Different Screw-Implant Types: Comparison Between Tissue Level (TE) and Bone Level (BL) Implant. Journal of Maxillofacial and Oral Surgery, 13(3), 259–266. https://doi.org/10.1007/s12663-013-0532-5
Liu, X., Pang, F., Li, Y., Jia, H., Cui, X., Yue, Y., Yang, X., & Yang, Q. (2019). Effects of Different Positions and Angles of Implants in Maxillary Edentulous Jaw on Surrounding Bone Stress under Dynamic Loading: A Three-Dimensional Finite Element Analysis. Computational and Mathematical Methods in Medicine, 2019. https://doi.org/10.1155/2019/8074096
Lopez, M. A., Bassi, M. A., Confalone, L., Gaudio, R. M., Lombardo, L., & Lauritano, D. (2016). Retrospective study on bone-level and soft-Tissue-level cylindrical implants. Journal of Biological Regulators and Homeostatic Agents, 30(2), 43–48.
Marc Philipp, D., Kohorst, P., Borchers, L., & Stiesch, M. (2010). No TitleInfluence of the supporting structure on stress distribution in all-ceramic FPDs. Int J Prosthodont.
Misch, C. (2008). Substituição de um elemento unitário: opções de tratamento. In 3.a (Ed.), Implantes Dentais Contemporâneos (pp. 327–366). Elsevier.
Mortazavi, H., Khodadoustan, A., Kheiri, A., & Kheiri, L. (2021). Bone loss-related factors in tissue and bone level dental implants: A systematic review of clinical trials. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 47(3), 153–174. https://doi.org/10.5125/JKAOMS.2021.47.3.153
Mosavar, A., Nili, M., Hashemi, S. R., & Kadkhodaei, M. (2017). A Comparative Analysis on Two Types of Oral Implants, Bone-Level and Tissue-Level, with Different Cantilever Lengths of Fixed Prosthesis. Journal of Prosthodontics, 26(4), 289–295. https://doi.org/10.1111/jopr.12388
Norton, M. R. (2000). An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clinical Oral Implants Research, 11(5), 458–464. https://doi.org/10.1034/j.1600-0501.2000.011005458.x
Papaspyridakos, P., Bordin, T. B., Kim, Y. J., El-Rafie, K., Pagni, S. E., Natto, Z. S., Teixeira, E. R., Chochlidakis, K., & Weber, H. P. (2020). Technical Complications and Prosthesis Survival Rates with Implant-Supported Fixed Complete Dental Prostheses: A Retrospective Study with 1- to 12-Year Follow-Up. Journal of Prosthodontics, 29(1), 3–11. https://doi.org/10.1111/jopr.13119
Pellicer-Chover, H., Díaz-Sanchez, M., Soto-Peñaloza, D., Peñarrocha-Diago, M., Canullo, L., & Peñarrocha-Oltra, D. (2019). Impact of crestal and subcrestal implant placement upon changes in marginal peri-implant bone level. A systematic review. Medicina Oral Patologia Oral y Cirugia Bucal, 24(5), e673–e683. https://doi.org/10.4317/medoral.23006
Poluha, R. L., Lamartine, C., Melo, D. M., Paula, L. G. De, Junior, E. B., & Sábio, S. (2015). Evaluation of resistance to fracture of temporary implant-supported prosthesis with extension in cantilever enhanced with glass fibre. 7(November), 183–189. https://doi.org/10.5897/JDOH2015.0181
Reis, F., Brandt, W. C., Cristina, L., Boaro, C., & Miranda, M. E. (2021). Análise de tensões em prótese unitária sobre implante mal posicionado. 2021, 1–8. https://doi.org/http://dx.doi.org/10.33448/rsd-v10i4.XXXXX
Roccuzzo, A., Jensen, S. S., Worsaae, N., & Gotfredsen, K. (2020). Implant-supported 2-unit cantilevers compared with single crowns on adjacent implants: A comparative retrospective case series. Journal of Prosthetic Dentistry, 123(5), 717–723. https://doi.org/10.1016/j.prosdent.2019.04.024
Sargolzaie, N., Moeintaghavi, A., & Shojaie, H. (2017). Comparing the Quality of Life of Patients Requesting Dental Implants Before and After Implant. The Open Dentistry Journal, 11(1), 485–491. https://doi.org/10.2174/1874210601711010485
Schmid, E., Morandini, M., Roccuzzo, A., Ramseier, C. A., Sculean, A., & Salvi, G. E. (2020). Clinical and radiographic outcomes of implant-supported fixed dental prostheses with cantilever extension. A retrospective cohort study with a follow-up of at least 10 years. Clinical Oral Implants Research, 31(12), 1243–1252. https://doi.org/10.1111/clr.13672
Skalak, R. (1983). Biomechanical considerations in osseointegrated prostheses. The Journal of Prosthetic Dentistry, 49(6), 843–848. https://doi.org/10.1016/0022-3913(83)90361-X
Teixeira, E. R., Sato, Y., Akagawa, Y., & Shindoi, N. (1998). A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. Journal of Oral Rehabilitation.
Valera-Jiménez, J. F., Burgueño-Barris, G., Gómez-González, S., López-López, J., Valmaseda-Castellón, E., & Fernández-Aguado, E. (2020). Finite element analysis of narrow dental implants. Dental Materials, 36(7), 927–935. https://doi.org/10.1016/j.dental.2020.04.013
van Eekeren, P., Tahmaseb, A., & Wismeijer, D. (2016). Crestal bone changes in macrogeometrically similar implants with the implant–abutment connection at the crestal bone level or 2.5 mm above: a prospective randomized clinical trial. Clinical Oral Implants Research, 27(12), 1479–1484. https://doi.org/10.1111/clr.12581
Yoda, N., Liao, Z., Chen, J., Sasaki, K., Swain, M., & Li, Q. (2016). Role of implant configurations supporting three-unit fixed partial denture on mandibular bone response: biological-data-based finite element study. Journal of Oral Rehabilitation, 43(9), 692–701. https://doi.org/10.1111/joor.12411
Zupancic Cepic, L., Frank, M., Reisinger, A., Pahr, D., Zechner, W., & Schedle, A. (2022). Biomechanical finite element analysis of short-implant-supported, 3-unit, fixed CAD/CAM prostheses in the posterior mandible. International Journal of Implant Dentistry, 8(1). https://doi.org/10.1186/s40729-022-00404-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Francisco Carlos dos Santos Reis; Felipe Antunes dos Santos; Ricardo Seixas de Paiva Lima; Letícia Cidreira Boaro; Milton Edson Miranda; Wilson Roberto Sendyk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.