Avaliação biomecânica de próteses parciais fixas sobre implantes com diferentes plataformas em região posterior de mandíbula: análise in sílico
DOI:
https://doi.org/10.33448/rsd-v11i6.29037Palavras-chave:
Implante dentário; Análise em elementos finitos; Prótese dentária.Resumo
Este estudo avaliou o comportamento de implantes com diferentes geometrias cervicais em prótese de três elementos em região posterior de mandíbula pelo método de elementos finitos. Para isso, quatro modelos foram criados no software SolidWorks Professional 2013®, no formato de um bloco ósseo, simulando a reabilitação de três elementos em cerâmica à base de zircônia, suportada por dois implantes nas regiões dos elementos 44 e 46. As variáveis foram diferentes geometrias cervicais (nível ósseo – NO – ou nível gengival – NG) Dispostos: M1 – dois implantes NO; M2 – dois implantes NG; M3 – implante do elemento 44 em NO e elemento 46 em NG, e; M4 – implante elemento 44 em NG e elemento 46 em NO. Os modelos foram exportados para o software Ansys Workbench 14.0®. No carregamento oclusal, 300 N no primeiro molar e 150 N nos pré-molares. O modelo M4 apresentou menor tensão de compressão em osso cortical (49,55 MPa), enquanto, para osso medular; o modelo M2 apresentou menor tensão de compressão (3,89 MPa). Nos implantes em região de pré-molar e molar, os modelos M3 e M1 apresentaram menores picos de tensão von Mises, com 67,78 MPa e 97,91 MPa, respectivamente. O modelo M4 apresentou menores tensões von Mises para pilar protético em região de pré-molar (66,61 MPa), enquanto o modelo M3 apresentou menor tensão no pilar em região de molar (113,63 MPa). Concluiu-se que existe influência da geometria cervical dos implantes na distribuição de tensões e que implantes NO apresentaram picos de tensão maiores que implantes NG.
Referências
Adell, R. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery, 10(6), 387–416. https://doi.org/10.1016/S0300-9785(81)80077-4
Adell, R., Eriksson, B., Lekholm, U., Brånemark, P., & Jemt, T. (2002). A Long-Term Follow-up Study of Osseointegrated Implants in the Treatment of Totally Edentulous Jaws. Clinical Oral Implants Research, 13(3), 260–273. https://doi.org/10.1034/j.1600-0501.2002.130305.x
Agustín-Panadero, R., Bermúdez-Mulet, I., Fernández-Estevan, L., Solá-Ruíz, M. F., Marco-Pitarch, R., Selva-García, M., Zubizarreta-Macho, Á., & León-Martínez, R. (2021). Peri-implant behavior of tissue level dental implants with a convergent neck. International Journal of Environmental Research and Public Health, 18(10). https://doi.org/10.3390/ijerph18105232
Becker, W., & Becker, B. E. (1995). Replacement of maxillary and mandibular molars with single endosseous implant restorations: A retrospective study. The Journal of Prosthetic Dentistry, 74(1), 51–55. https://doi.org/10.1016/S0022-3913(05)80229-X
Borges Radaelli, M. T., Idogava, H. T., Spazzin, A. O., Noritomi, P. Y., & Boscato, N. (2018). Parafunctional loading and occlusal device on stress distribution around implants: A 3D finite element analysis. Journal of Prosthetic Dentistry, 120(4), 565–572. https://doi.org/10.1016/j.prosdent.2017.12.023
Carvalho, R. S. De, Eduardo, C., & Jr, F. (1960). Classificação de Francischone para próteses sobre implantes Carlos Eduardo Francischone.
Chiapasco, M., Casentini, P., & Zaniboni, M. (2014). Implants in Reconstructed Bone: A Comparative Study on the Outcome of Straumann® Tissue Level and Bone Level Implants Placed in Vertically Deficient Alveolar Ridges Treated by Means of Autogenous Onlay Bone Grafts. Clinical Implant Dentistry and Related Research, 16(1), 32–50. https://doi.org/10.1111/j.1708-8208.2012.00457.x
Choi, S. M., Choi, H., Lee, D. H., & Hong, M. H. (2021). Comparative finite element analysis of mandibular posterior single zirconia and titanium implants: a 3-dimensional finite element analysis. Journal of Advanced Prosthodontics, 13(6), 396–407. https://doi.org/10.4047/jap.2021.13.6.396
Coray, R., Zeltner, M., & Özcan, M. (2016). Fracture strength of implant abutments after fatigue testing: A systematic review and a meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 62, 333–346. https://doi.org/10.1016/j.jmbbm.2016.05.011
Donovan, R., Fetner, A., Koutouzis, T., & Lundgren, T. (2010). Crestal Bone Changes Around Implants With Reduced Abutment Diameter Placed Non-Submerged and at Subcrestal Positions: A 1-Year Radiographic Evaluation. Journal of Periodontology, 81(3), 428–434. https://doi.org/10.1902/jop.2009.090317
Elsayyad, A. A., Abbas, N. A., AbdelNabi, N. M., & Osman, R. B. (2020). Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: A 3D finite element analysis study. Journal of Prosthetic Dentistry, 124(1), 68.e1-68.e10. https://doi.org/10.1016/j.prosdent.2020.01.015
Eser, A., Tonuk, E., Akca, K., Dard, M. M., & Cehreli, M. C. (2013). Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. Journal of Biomechanics, 46(13), 2250–2257. https://doi.org/10.1016/j.jbiomech.2013.06.025
Eskitascioglu, G., Usumez, A., Sevimay, M., Soykan, E., & Unsal, E. (2004). The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. Journal of Prosthodontics, 91(2), 144–150. https://doi.org/doi:10.1016/j.prosdent.2003.10.018
Filius, M. A. P., Vissink, A., Cune, M. S., Raghoebar, G. M., & Visser, A. (2018). Effect of implant therapy on oral health-related quality of life (OHIP-49), health status (SF-36), and satisfaction of patients with several agenetic teeth: Prospective cohort study. Clinical Implant Dentistry and Related Research, 20(4), 592–597. https://doi.org/10.1111/cid.12625
Geng, J.-P., Tan, K. B. C., & Gui-Rong Liu. (2001). Application of finite element analysis in implant dentistry: A review of the literature. The Journal of Prosthetic Dentistry, 85(June), 585–598. http://www.sciencedirect.com/science/article/pii/s0022-3913(01)57431-4
Guirado, J. L. C., Yuguero, M. R. S., Zamora, G. P., & Barrio, E. M. (2007). Immediate provisionalization on a new implant design for esthetic restoration and preserving crestal bone. Implant Dentistry, 16(2), 155–164. https://doi.org/10.1097/ID.0b013e31805816c9
Hadzik, J., Botzenhart, U., Krawiec, M., Gedrange, T., Heinemann, F., Vegh, A., & Dominiak, M. (2017). Comparative evaluation of the effectiveness of the implantation in the lateral part of the mandible between short tissue level (TE) and bone level (BL) implant systems. Annals of Anatomy, 213, 78–82. https://doi.org/10.1016/j.aanat.2017.05.008
Hagiwara, Y. (2010). Does platform switching really prevent crestal bone loss around implants? Japanese Dental Science Review, 46(2), 122–131. https://doi.org/10.1016/j.jdsr.2009.11.003
Hämmerle, C. H. F., Cordaro, L., Alccayhuaman, K. A. A., Botticelli, D., Esposito, M., Colomina, L. E., Gil, A., Gulje, F. L., Ioannidis, A., Meijer, H., Papageorgiou, S., Raghoebar, G., Romeo, E., Renouard, F., Storelli, S., Torsello, F., & Wachtel, H. (2018). Biomechanical aspects: Summary and consensus statements of group 4. The 5 th EAO Consensus Conference 2018. Clinical Oral Implants Research, 29(May), 326–331. https://doi.org/10.1111/clr.13284
Jones, A. A., & Cochran, D. L. (2006). Consequences of Implant Design. Dental Clinics of North America, 50(3), 339–360. https://doi.org/10.1016/j.cden.2006.03.008
Khraisat, A., Stegaroiu, R., Nomura, S., & Miyakawa, O. (2002). Fatigue resistance of two implant/abutment joint designs. Journal of Prosthetic Dentistry, 88(6), 604–610. https://doi.org/10.1067/mpr.2002.129384
Kumar, V. V., Sagheb, K., Kämmerer, P. W., Al-Nawas, B., & Wagner, W. (2014). Retrospective Clinical Study of Marginal Bone Level Changes with Two Different Screw-Implant Types: Comparison Between Tissue Level (TE) and Bone Level (BL) Implant. Journal of Maxillofacial and Oral Surgery, 13(3), 259–266. https://doi.org/10.1007/s12663-013-0532-5
Liu, X., Pang, F., Li, Y., Jia, H., Cui, X., Yue, Y., Yang, X., & Yang, Q. (2019). Effects of Different Positions and Angles of Implants in Maxillary Edentulous Jaw on Surrounding Bone Stress under Dynamic Loading: A Three-Dimensional Finite Element Analysis. Computational and Mathematical Methods in Medicine, 2019. https://doi.org/10.1155/2019/8074096
Lopez, M. A., Bassi, M. A., Confalone, L., Gaudio, R. M., Lombardo, L., & Lauritano, D. (2016). Retrospective study on bone-level and soft-Tissue-level cylindrical implants. Journal of Biological Regulators and Homeostatic Agents, 30(2), 43–48.
Marc Philipp, D., Kohorst, P., Borchers, L., & Stiesch, M. (2010). No TitleInfluence of the supporting structure on stress distribution in all-ceramic FPDs. Int J Prosthodont.
Misch, C. (2008). Substituição de um elemento unitário: opções de tratamento. In 3.a (Ed.), Implantes Dentais Contemporâneos (pp. 327–366). Elsevier.
Mortazavi, H., Khodadoustan, A., Kheiri, A., & Kheiri, L. (2021). Bone loss-related factors in tissue and bone level dental implants: A systematic review of clinical trials. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 47(3), 153–174. https://doi.org/10.5125/JKAOMS.2021.47.3.153
Mosavar, A., Nili, M., Hashemi, S. R., & Kadkhodaei, M. (2017). A Comparative Analysis on Two Types of Oral Implants, Bone-Level and Tissue-Level, with Different Cantilever Lengths of Fixed Prosthesis. Journal of Prosthodontics, 26(4), 289–295. https://doi.org/10.1111/jopr.12388
Norton, M. R. (2000). An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clinical Oral Implants Research, 11(5), 458–464. https://doi.org/10.1034/j.1600-0501.2000.011005458.x
Papaspyridakos, P., Bordin, T. B., Kim, Y. J., El-Rafie, K., Pagni, S. E., Natto, Z. S., Teixeira, E. R., Chochlidakis, K., & Weber, H. P. (2020). Technical Complications and Prosthesis Survival Rates with Implant-Supported Fixed Complete Dental Prostheses: A Retrospective Study with 1- to 12-Year Follow-Up. Journal of Prosthodontics, 29(1), 3–11. https://doi.org/10.1111/jopr.13119
Pellicer-Chover, H., Díaz-Sanchez, M., Soto-Peñaloza, D., Peñarrocha-Diago, M., Canullo, L., & Peñarrocha-Oltra, D. (2019). Impact of crestal and subcrestal implant placement upon changes in marginal peri-implant bone level. A systematic review. Medicina Oral Patologia Oral y Cirugia Bucal, 24(5), e673–e683. https://doi.org/10.4317/medoral.23006
Poluha, R. L., Lamartine, C., Melo, D. M., Paula, L. G. De, Junior, E. B., & Sábio, S. (2015). Evaluation of resistance to fracture of temporary implant-supported prosthesis with extension in cantilever enhanced with glass fibre. 7(November), 183–189. https://doi.org/10.5897/JDOH2015.0181
Reis, F., Brandt, W. C., Cristina, L., Boaro, C., & Miranda, M. E. (2021). Análise de tensões em prótese unitária sobre implante mal posicionado. 2021, 1–8. https://doi.org/http://dx.doi.org/10.33448/rsd-v10i4.XXXXX
Roccuzzo, A., Jensen, S. S., Worsaae, N., & Gotfredsen, K. (2020). Implant-supported 2-unit cantilevers compared with single crowns on adjacent implants: A comparative retrospective case series. Journal of Prosthetic Dentistry, 123(5), 717–723. https://doi.org/10.1016/j.prosdent.2019.04.024
Sargolzaie, N., Moeintaghavi, A., & Shojaie, H. (2017). Comparing the Quality of Life of Patients Requesting Dental Implants Before and After Implant. The Open Dentistry Journal, 11(1), 485–491. https://doi.org/10.2174/1874210601711010485
Schmid, E., Morandini, M., Roccuzzo, A., Ramseier, C. A., Sculean, A., & Salvi, G. E. (2020). Clinical and radiographic outcomes of implant-supported fixed dental prostheses with cantilever extension. A retrospective cohort study with a follow-up of at least 10 years. Clinical Oral Implants Research, 31(12), 1243–1252. https://doi.org/10.1111/clr.13672
Skalak, R. (1983). Biomechanical considerations in osseointegrated prostheses. The Journal of Prosthetic Dentistry, 49(6), 843–848. https://doi.org/10.1016/0022-3913(83)90361-X
Teixeira, E. R., Sato, Y., Akagawa, Y., & Shindoi, N. (1998). A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. Journal of Oral Rehabilitation.
Valera-Jiménez, J. F., Burgueño-Barris, G., Gómez-González, S., López-López, J., Valmaseda-Castellón, E., & Fernández-Aguado, E. (2020). Finite element analysis of narrow dental implants. Dental Materials, 36(7), 927–935. https://doi.org/10.1016/j.dental.2020.04.013
van Eekeren, P., Tahmaseb, A., & Wismeijer, D. (2016). Crestal bone changes in macrogeometrically similar implants with the implant–abutment connection at the crestal bone level or 2.5 mm above: a prospective randomized clinical trial. Clinical Oral Implants Research, 27(12), 1479–1484. https://doi.org/10.1111/clr.12581
Yoda, N., Liao, Z., Chen, J., Sasaki, K., Swain, M., & Li, Q. (2016). Role of implant configurations supporting three-unit fixed partial denture on mandibular bone response: biological-data-based finite element study. Journal of Oral Rehabilitation, 43(9), 692–701. https://doi.org/10.1111/joor.12411
Zupancic Cepic, L., Frank, M., Reisinger, A., Pahr, D., Zechner, W., & Schedle, A. (2022). Biomechanical finite element analysis of short-implant-supported, 3-unit, fixed CAD/CAM prostheses in the posterior mandible. International Journal of Implant Dentistry, 8(1). https://doi.org/10.1186/s40729-022-00404-8
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Francisco Carlos dos Santos Reis; Felipe Antunes dos Santos; Ricardo Seixas de Paiva Lima; Letícia Cidreira Boaro; Milton Edson Miranda; Wilson Roberto Sendyk
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.